ترغب بنشر مسار تعليمي؟ اضغط هنا

High-redshift Galaxy Formation with Self-consistently Modeled Stars and Massive Black Holes: Stellar Feedback and Quasar Growth

196   0   0.0 ( 0 )
 نشر من قبل Ji-Hoon Kim Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As computational resolution of modern cosmological simulations reach ever so close to resolving individual star-forming clumps in a galaxy, a need for resolution-appropriate physics for a galaxy-scale simulation has never been greater. To this end, we introduce a self-consistent numerical framework that includes explicit treatments of feedback from star-forming molecular clouds (SFMCs) and massive black holes (MBHs). In addition to the thermal supernovae feedback from SFMC particles, photoionizing radiation from both SFMCs and MBHs is tracked through full 3-dimensional ray tracing. A mechanical feedback channel from MBHs is also considered. Using our framework, we perform a state-of-the-art cosmological simulation of a quasar-host galaxy at z~7.5 for ~25 Myrs with all relevant galactic components such as dark matter, gas, SFMCs, and an embedded MBH seed of ~> 1e6 Ms. We find that feedback from SFMCs and an accreting MBH suppresses runaway star formation locally in the galactic core region. Newly included radiation feedback from SFMCs, combined with feedback from the MBH, helps the MBH grow faster by retaining gas that eventually accretes on to the MBH. Our experiment demonstrates that previously undiscussed types of interplay between gas, SFMCs, and a MBH may hold important clues about the growth and feedback of quasars and their host galaxies in the high-redshift Universe.



قيم البحث

اقرأ أيضاً

139 - Ji-hoon Kim 2011
There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numeri cal framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto a MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full 3D adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2e11 Msun galactic halo and its 1e5 Msun embedded MBH at redshift 3 in a cosmological LCDM simulation. The MBH feedback heats the surrounding ISM up to 1e6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant, and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
The presence of massive black holes (BHs) with masses of order $10^9rm, M_odot$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to explain massive BH formation, from the low-mass seed BH remnants of the first generation of stars to the massive seed BHs resulting from the rapid collapse of massive gas clouds. However, the plausibility of some of these scenarios to occur within the progenitors of high-z quasars has not yet been thoroughly explored. In this work, we investigate, by combining dark-matter only N-body simulations with a semi-analytic framework, whether the conditions for the formation of massive seed BHs from synchronised atomic-cooling halo pairs and/or dynamically-heated mini-haloes are fulfilled in the overdense regions where the progenitors of a typical high-redshift quasar host form and evolve. Our analysis shows that the peculiar conditions in such regions, i.e. strong halo clustering and high star formation rates, are crucial to produce a non-negligible number of massive seed BH host candidates: we find $approx1400$ dynamically heated metal-free mini-haloes, including one of these which evolves to a synchronised pair and ends up in the massive quasar-host halo by $z=6$. This demonstrates that the progenitors of high-redshift quasar host haloes can harbour early massive seed BHs. Our results further suggest that multiple massive seed BHs may form in or near the quasar hosts progenitors, potentially merging at lower redshifts and yielding gravitational wave events.
Short-lived intermittent phases of super-critical (super-Eddington) growth, coupled with star formation via positive feedback, may account for early growth of massive black holes (MBH) and coevolution with their host spheroids. We estimate the possib le growth rates and duty cycles of these episodes, both assuming slim accretion disk solutions, and adopting the results of recent numerical simulations. The angular momentum of gas joining the accretion disk determines the length of the accretion episodes, and the final mass a MBH can reach. The latter can be related to the gas velocity dispersion, and in galaxies with low-angular momentum gas the MBH can get to a higher mass. When the host galaxy is able to sustain inflow rates at 1-100 msunyr, replenishing and circulation lead to a sequence of short (~1e4-1e7 years), heavily obscured accretion episodes that increase the growth rates, with respect to an Eddington-limited case, by several orders of magnitude. Our model predicts that the ratio of MBH accretion rate to star formation rate is 1e2 or higher, leading, at early epochs, to a ratio of MBH to stellar mass higher than the canonical value of ~1e-3, in agreement with current observations. Our model makes specific predictions that long-lived super-critical accretion occurs only in galaxies with copious low-angular momentum gas, and in this case the MBH is more massive at fixed velocity dispersion.
We introduce massive black holes (BHs) in the Feedback In Realistic Environments project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass halos ($M_{rm halo}(z=2) approx 10^{12.5},rm{M}_{odot}$) down to $z=1$. These si mulations model stellar feedback by supernovae, stellar winds, and radiation, and BH growth using a gravitational torque-based prescription tied to resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short ($lesssim 1,$Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain under-massive relative to the local $M_{rm BH}$-$M_{rm bulge}$ relation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty, and galaxies settle into a more ordered state, with BHs rapidly converging onto the scaling relation when the host reaches $M_{rm bulge} sim 10^{10},rm{M}_{odot}$. Our results are not sensitive to the details of the accretion model so long as BH growth is tied to the gas content within $sim 100,$pc of the BH. Our simulations imply that bursty stellar feedback has strong implications for BH and AGN demographics, especially in the early Universe and for low-mass galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا