ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Formation with Self-consistently Modeled Stars and Massive Black Holes. I: Feedback-regulated Star Formation and Black Hole Growth

84   0   0.0 ( 0 )
 نشر من قبل Ji-Hoon Kim Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ji-hoon Kim




اسأل ChatGPT حول البحث

There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto a MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full 3D adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2e11 Msun galactic halo and its 1e5 Msun embedded MBH at redshift 3 in a cosmological LCDM simulation. The MBH feedback heats the surrounding ISM up to 1e6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant, and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

قيم البحث

اقرأ أيضاً

As computational resolution of modern cosmological simulations reach ever so close to resolving individual star-forming clumps in a galaxy, a need for resolution-appropriate physics for a galaxy-scale simulation has never been greater. To this end, w e introduce a self-consistent numerical framework that includes explicit treatments of feedback from star-forming molecular clouds (SFMCs) and massive black holes (MBHs). In addition to the thermal supernovae feedback from SFMC particles, photoionizing radiation from both SFMCs and MBHs is tracked through full 3-dimensional ray tracing. A mechanical feedback channel from MBHs is also considered. Using our framework, we perform a state-of-the-art cosmological simulation of a quasar-host galaxy at z~7.5 for ~25 Myrs with all relevant galactic components such as dark matter, gas, SFMCs, and an embedded MBH seed of ~> 1e6 Ms. We find that feedback from SFMCs and an accreting MBH suppresses runaway star formation locally in the galactic core region. Newly included radiation feedback from SFMCs, combined with feedback from the MBH, helps the MBH grow faster by retaining gas that eventually accretes on to the MBH. Our experiment demonstrates that previously undiscussed types of interplay between gas, SFMCs, and a MBH may hold important clues about the growth and feedback of quasars and their host galaxies in the high-redshift Universe.
We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully c ompare star formation rate (SFR) and BH accretion rate (BHAR) timescales, temporal behaviour and relative magnitude. We find that (i) BHAR and galaxy-wide SFR are typically temporally uncorrelated, and have different variability timescales, except during the merger proper, lasting ~0.2-0.3 Gyr. BHAR and nuclear (<100 pc) SFR are better correlated, and their variability are similar. Averaging over time, the merger phase leads typically to an increase by a factor of a few in the BHAR/SFR ratio. (ii) BHAR and nuclear SFR are intrinsically proportional, but the correlation lessens if the long-term SFR is measured. (iii) Galaxies in the remnant phase are the ones most likely to be selected as systems dominated by an active galactic nucleus (AGN), because of the long time spent in this phase. (iv) The timescale over which a given diagnostic probes the SFR has a profound impact on the recovered correlations with BHAR, and on the interpretation of observational data.
To explain the observed population of supermassive black holes at z~7, very massive seed black holes or, alternatively, super-Eddington scenarios are needed to reach final masses of the order of 10^9 solar masses. A popular explanation for massive se eds has been the direct collapse model, which predicts the formation of a single massive object due to the direct collapse of a massive gas cloud. Simulations over the last years have however shown that such a scenario is very difficult to achieve. A realistic model of black hole formation should therefore take fragmentation into account, and consider the interaction between stellar-dynamical and gas-dynamical processes. We present here numerical simulations pursued with the AMUSE code, employing an approximate treatment of the gas. Based on these simulations, we show that very massive black holes of 10^4-10^5 solar masses may form depending on the gas supply and the accretion onto the protostars.
In many galactic nuclei, a nuclear stellar cluster (NSC) co-exists with a supermassive black hole (SMBH). In this work, we explore the idea that the NSC forms before the SMBH through the merger of several stellar clusters that may contain intermediat e-mass black holes (IMBHs). These IMBHs can subsequently grow by mergers and accretion to form an SMBH. To check the observable consequences of this proposed SMBH seeding mechanism, we created an observationally motivated mock population of galaxies, in which NSCs are constructed by aggregating stellar clusters that may or may not contain IMBHs. We model the growth of IMBHs in the NSCs through gravitational wave (GW) mergers with other IMBHs and gas accretion. In the case of GW mergers, the merged BH can either be retained or ejected depending on the GW recoil kick it receives. The likelihood of retaining the merged BH increases if we consider growth of IMBHs in the NSC through gas accretion. We find that nucleated lower-mass galaxies ($rm M_{star} lesssim 10^{9} M_{odot}$; e.g. M33) have an SMBH seed occupation fraction of about 0.3 to 0.5. This occupation fraction increases with galaxy stellar mass and for more massive galaxies ($rm 10^{9} M_{odot} lesssim rm M_{star} lesssim 10^{11} M_{odot}$), it is between 0.5 and 0.8, depending on how BH growth is modelled. These occupation fractions are consistent with observational constraints. Furthermore, allowing for BH growth also allows us to reproduce the observed diversity in the mass range of SMBHs in the $rm M_{rm NSC} - M_{rm BH}$ plane.
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusiv e. Repeated mergers of binary BHs, detectable via gravitational wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. We show that a massive stellar BH seed can easily grow to $sim 10^3 - 10^4,M_odot$ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers, so that a negative correlation exists between final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا