ﻻ يوجد ملخص باللغة العربية
We introduce massive black holes (BHs) in the Feedback In Realistic Environments project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass halos ($M_{rm halo}(z=2) approx 10^{12.5},rm{M}_{odot}$) down to $z=1$. These simulations model stellar feedback by supernovae, stellar winds, and radiation, and BH growth using a gravitational torque-based prescription tied to resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short ($lesssim 1,$Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain under-massive relative to the local $M_{rm BH}$-$M_{rm bulge}$ relation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty, and galaxies settle into a more ordered state, with BHs rapidly converging onto the scaling relation when the host reaches $M_{rm bulge} sim 10^{10},rm{M}_{odot}$. Our results are not sensitive to the details of the accretion model so long as BH growth is tied to the gas content within $sim 100,$pc of the BH. Our simulations imply that bursty stellar feedback has strong implications for BH and AGN demographics, especially in the early Universe and for low-mass galaxies.
The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (A
Nearly every massive galaxy harbors a supermassive black hole (SMBH) in its nucleus. SMBH masses are millions to billions $M_{odot}$, and they correlate with properties of spheroids of their host galaxies. While the SMBH growth channels, mergers and
We explore here an scenario for massive black hole formation driven by stellar collisions in galactic nuclei, proposing a new formation regime of global instability in nuclear stellar clusters triggered by runaway stellar collisions. Using order of m
As computational resolution of modern cosmological simulations reach ever so close to resolving individual star-forming clumps in a galaxy, a need for resolution-appropriate physics for a galaxy-scale simulation has never been greater. To this end, w
The rapid assembly of the massive black holes that power the luminous quasars observed at $z sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $sim 10^5,rm M_od