ترغب بنشر مسار تعليمي؟ اضغط هنا

The case for super-critical accretion onto massive black holes at high redshift

184   0   0.0 ( 0 )
 نشر من قبل Marta Volonteri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Short-lived intermittent phases of super-critical (super-Eddington) growth, coupled with star formation via positive feedback, may account for early growth of massive black holes (MBH) and coevolution with their host spheroids. We estimate the possible growth rates and duty cycles of these episodes, both assuming slim accretion disk solutions, and adopting the results of recent numerical simulations. The angular momentum of gas joining the accretion disk determines the length of the accretion episodes, and the final mass a MBH can reach. The latter can be related to the gas velocity dispersion, and in galaxies with low-angular momentum gas the MBH can get to a higher mass. When the host galaxy is able to sustain inflow rates at 1-100 msunyr, replenishing and circulation lead to a sequence of short (~1e4-1e7 years), heavily obscured accretion episodes that increase the growth rates, with respect to an Eddington-limited case, by several orders of magnitude. Our model predicts that the ratio of MBH accretion rate to star formation rate is 1e2 or higher, leading, at early epochs, to a ratio of MBH to stellar mass higher than the canonical value of ~1e-3, in agreement with current observations. Our model makes specific predictions that long-lived super-critical accretion occurs only in galaxies with copious low-angular momentum gas, and in this case the MBH is more massive at fixed velocity dispersion.



قيم البحث

اقرأ أيضاً

115 - A. Lupi , F. Haardt , M. Dotti 2015
The rapid assembly of the massive black holes that power the luminous quasars observed at $z sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $sim 10^5,rm M_od ot$, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the slim disc solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
We investigate the abundance of Super-Massive Black Hole (SMBH) seeds in primordial galaxy halos. We explore the assumption that dark matter halos outgrowing a critical halo mass M_c have some probability p of having spawned a SMBH seed. Current obse rvations of local, intermediate-mass galaxies constrain these parameters: For $M_c=10^{11}M_odot$, all halos must be seeded, but when adopting smaller M_c masses the seeding can be much less efficient. The constraints also put lower limits on the number density of black holes in the local and high-redshift Universe. Reproducing z~6 quasar space densities depends on their typical halo mass, which can be constrained by counting nearby Lyman Break Galaxies and Lyman Alpha Emitters. For both observables, our simulations demonstrate that single-field predictions are too diverse to make definitive statements, in agreement with mixed claims in the literature. If quasars are not limited to the most massive host halos, they may represent a tiny fraction (~10^-5) of the SMBH population. Finally, we produce a wide range of predictions for gravitational events from SMBH mergers. We define a new diagnostic diagram for LISA to measure both SMBH space density and the typical delay between halo merger and black hole merger. While previous works have explored specific scenarios, our results hold independent of the seed mechanism, seed mass, obscuration, fueling methods and duty cycle.
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experienc es a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different discs surface densities which alter the black holes dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Initially circular black hole binaries increase only slightly their eccentricity which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black holes dynamics under accretion only explores the late evolution stages of the binary in an otherwise unperturbed retrograde disc to illustrate how eccentricity evolves with time in relation to the shape of the underlying surface density distribution.
506 - A. Lapi 2013
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity fun ctions at high redshift z>1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ~0.5-1 Gyr, and then abruptly declines due to quasar feedback; over the same timescale, (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation and is temporarily stored into a massive reservoir/proto-torus wherefrom it can be promptly accreted; (iii) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L_Edd< 4, particularly at the highest redshifts; (iv) for massive BHs the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the latter has retained enough gas, a phase of supply-limited accretion follows exponentially declining with a timescale of about 2 e-folding times. We show that the ratio of the FIR luminosity of the host galaxy to the bolometric luminosity of the AGN maps the various stages of the above sequence. Finally, we discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly-lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next generation X-ray instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا