ﻻ يوجد ملخص باللغة العربية
We describe the submission of the Quo Vadis team to the Traffic4cast competition, which was organized as part of the NeurIPS 2019 series of challenges. Our system consists of a temporal regression module, implemented as $1times1$ 2d convolutions, augmented with spatio-temporal biases. We have found that using biases is a straightforward and efficient way to include seasonal patterns and to improve the performance of the temporal regression model. Our implementation obtains a mean squared error of $9.47times 10^{-3}$ on the test data, placing us on the eight place team-wise. We also present our attempts at incorporating spatial correlations into the model; however, contrary to our expectations, adding this type of auxiliary information did not benefit the main system. Our code is available at https://github.com/danoneata/traffic4cast.
We review the recent highlights of theoretical flavour physics, based on the theory summary talk given at FPCP2017. Over the past years, a number of intriguing anomalies have emerged in flavour violating $K$ and $B$ meson decays, constituting some of
The goal of the IARAI competition traffic4cast was to predict the city-wide traffic status within a 15-minute time window, based on information from the previous hour. The traffic status was given as multi-channel images (one pixel roughly correspond
We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{mu}$: Quo vadis?, both held in Mainz from April 1$^{r
This work describes the speaker verification system developed by Human Language Technology Laboratory, National University of Singapore (HLT-NUS) for 2019 NIST Multimedia Speaker Recognition Evaluation (SRE). The multimedia research has gained attent
This technical report presents an overview of our solution used in the submission to ActivityNet Challenge 2019 Task 1 (textbf{temporal action proposal generation}) and Task 2 (textbf{temporal action localization/detection}). Temporal action proposal