ﻻ يوجد ملخص باللغة العربية
This technical report presents an overview of our solution used in the submission to ActivityNet Challenge 2019 Task 1 (textbf{temporal action proposal generation}) and Task 2 (textbf{temporal action localization/detection}). Temporal action proposal indicates the temporal intervals containing the actions and plays an important role in temporal action localization. Top-down and bottom-up methods are the two main categories used for proposal generation in the existing literature. In this paper, we devise a novel Multi-Granularity Fusion Network (MGFN) to combine the proposals generated from different frameworks for complementary filtering and confidence re-ranking. Specifically, we consider the diversity comprehensively from multiple perspectives, e.g. the characteristic aspect, the data aspect, the model aspect and the result aspect. Our MGFN achieves the state-of-the-art performance on the temporal action proposal task with 69.85 AUC score and the temporal action localization task with 38.90 mAP on the challenge testing set.
This technical report presents an overview of our solution used in the submission to 2021 HACS Temporal Action Localization Challenge on both Supervised Learning Track and Weakly-Supervised Learning Track. Temporal Action Localization (TAL) requires
In this report, we present our solution for the task of temporal action localization (detection) (task 1) in ActivityNet Challenge 2020. The purpose of this task is to temporally localize intervals where actions of interest occur and predict the acti
Over the last few years, we have witnessed tremendous progress on many subtasks of autonomous driving, including perception, motion forecasting, and motion planning. However, these systems often assume that the car is accurately localized against a h
The 3rd annual installment of the ActivityNet Large- Scale Activity Recognition Challenge, held as a full-day workshop in CVPR 2018, focused on the recognition of daily life, high-level, goal-oriented activities from user-generated videos as those fo
This paper describes the Notre Dame Natural Language Processing Groups (NDNLP) submission to the WNGT 2019 shared task (Hayashi et al., 2019). We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer