ترغب بنشر مسار تعليمي؟ اضغط هنا

HLT-NUS Submission for NIST 2019 Multimedia Speaker Recognition Evaluation

80   0   0.0 ( 0 )
 نشر من قبل Rohan Kumar Das
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This work describes the speaker verification system developed by Human Language Technology Laboratory, National University of Singapore (HLT-NUS) for 2019 NIST Multimedia Speaker Recognition Evaluation (SRE). The multimedia research has gained attention to a wide range of applications and speaker recognition is no exception to it. In contrast to the previous NIST SREs, the latest edition focuses on a multimedia track to recognize speakers with both audio and visual information. We developed separate systems for audio and visual inputs followed by a score level fusion of the systems from the two modalities to collectively use their information. The audio systems are based on x-vector based speaker embedding, whereas the face recognition systems are based on ResNet and InsightFace based face embeddings. With post evaluation studies and refinements, we obtain an equal error rate (EER) of 0.88% and an actual detection cost function (actDCF) of 0.026 on the evaluation set of 2019 NIST multimedia SRE corpus.



قيم البحث

اقرأ أيضاً

This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to address issues in handling real multi-talker recordings. We then present the details of the components, which include Res2Net-based speaker embedding extractor, conformer-based continuous speech separation with leakage filtering, and a modified DOVER (short for Diarization Output Voting Error Reduction) method for system fusion. We evaluate the systems with the data set provided by VoxSRCchallenge 2020, which contains real-life multi-talker audio collected from YouTube. Our best system achieves 3.71% and 6.23% of the diarization error rate (DER) on development set and evaluation set, respectively, being ranked the 1st at the diarization track of the challenge.
The objective of this paper is open-set speaker recognition of unseen speakers, where ideal embeddings should be able to condense information into a compact utterance-level representation that has small intra-speaker and large inter-speaker distance. A popular belief in speaker recognition is that networks trained with classification objectives outperform metric learning methods. In this paper, we present an extensive evaluation of most popular loss functions for speaker recognition on the VoxCeleb dataset. We demonstrate that the vanilla triplet loss shows competitive performance compared to classification-based losses, and those trained with our proposed metric learning objective outperform state-of-the-art methods.
This paper describes the XMUSPEECH speaker recognition and diarisation systems for the VoxCeleb Speaker Recognition Challenge 2021. For track 2, we evaluate two systems including ResNet34-SE and ECAPA-TDNN. For track 4, an important part of our syste m is VAD module which greatly improves the performance. Our best submission on the track 4 obtained on the evaluation set DER 5.54% and JER 27.11%, while the performance on the development set is DER 2.92% and JER 20.84%.
This report describes our submission to the VoxCeleb Speaker Recognition Challenge (VoxSRC) at Interspeech 2020. We perform a careful analysis of speaker recognition models based on the popular ResNet architecture, and train a number of variants usin g a range of loss functions. Our results show significant improvements over most existing works without the use of model ensemble or post-processing. We release the training code and pre-trained models as unofficial baselines for this years challenge.
In this paper, we address the problem of speaker recognition in challenging acoustic conditions using a novel method to extract robust speaker-discriminative speech representations. We adopt a recently proposed unsupervised adversarial invariance arc hitecture to train a network that maps speaker embeddings extracted using a pre-trained model onto two lower dimensional embedding spaces. The embedding spaces are learnt to disentangle speaker-discriminative information from all other information present in the audio recordings, without supervision about the acoustic conditions. We analyze the robustness of the proposed embeddings to various sources of variability present in the signal for speaker verification and unsupervised clustering tasks on a large-scale speaker recognition corpus. Our analyses show that the proposed system substantially outperforms the baseline in a variety of challenging acoustic scenarios. Furthermore, for the task of speaker diarization on a real-world meeting corpus, our system shows a relative improvement of 36% in the diarization error rate compared to the state-of-the-art baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا