ﻻ يوجد ملخص باللغة العربية
Despite the success of Generative Adversarial Networks (GANs), mode collapse remains a serious issue during GAN training. To date, little work has focused on understanding and quantifying which modes have been dropped by a model. In this work, we visualize mode collapse at both the distribution level and the instance level. First, we deploy a semantic segmentation network to compare the distribution of segmented objects in the generated images with the target distribution in the training set. Differences in statistics reveal object classes that are omitted by a GAN. Second, given the identified omitted object classes, we visualize the GANs omissions directly. In particular, we compare specific differences between individual photos and their approximate
We propose a novel method for solving regression tasks using few-shot or weak supervision. At the core of our method is the fundamental observation that GANs are incredibly successful at encoding semantic information within their latent space, even i
We present Poly-GAN, a novel conditional GAN architecture that is motivated by Fashion Synthesis, an application where garments are automatically placed on images of human models at an arbitrary pose. Poly-GAN allows conditioning on multiple inputs a
This paper explores visual indeterminacy as a description for artwork created with Generative Adversarial Networks (GANs). Visual indeterminacy describes images which appear to depict real scenes, but, on closer examination, defy coherent spatial int
Seamlessly blending features from multiple images is extremely challenging because of complex relationships in lighting, geometry, and partial occlusion which cause coupling between different parts of the image. Even though recent work on GANs enable
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of d