ﻻ يوجد ملخص باللغة العربية
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of design elements usually involves constraints with respect to element attributes, such as area, aspect ratio and reading-order. Automating attribute conditional graphic layouts remains a complex and unsolved problem. In this paper, we introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation by forcing both the generator and the discriminator to meet attribute conditions. Due to the complexity of graphic designs, we further propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns. In addition, we introduce various loss designs following different design principles for layout optimization. We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes. It can also adjust well-designed layouts to new sizes while retaining elements original reading-orders. The effectiveness of our method is validated through a user study.
We present Poly-GAN, a novel conditional GAN architecture that is motivated by Fashion Synthesis, an application where garments are automatically placed on images of human models at an arbitrary pose. Poly-GAN allows conditioning on multiple inputs a
Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the de
This paper introduces a Unified Model of Saliency and Importance (UMSI), which learns to predict visual importance in input graphic designs, and saliency in natural images, along with a new dataset and applications. Previous methods for predicting sa
Facial attribute editing has mainly two objectives: 1) translating image from a source domain to a target one, and 2) only changing the facial regions related to a target attribute and preserving the attribute-excluding details. In this work, we prop
Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In t