ترغب بنشر مسار تعليمي؟ اضغط هنا

Glassy Li Metal Anode for High-Performance Rechargeable Li Batteries

369   0   0.0 ( 0 )
 نشر من قبل Xuefeng Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of metal deposits and their properties. This is vital to achieve dendrite-free Li metal anodes with high electrochemical reversibility for practical high-energy rechargeable Li batteries. Here, cryogenic-transmission electron microscopy was used to capture the dynamic growth and atomic structure of Li metal deposits at the early nucleation stage, in which a phase transition from amorphous, disordered states to a crystalline, ordered one was revealed as a function of current density and deposition time. The real-time atomic interaction over wide spatial and temporal scales was depicted by the reactive-molecular dynamics simulations. The results show that the condensation accompanied with the amorphous-to-crystalline phase transition requires sufficient exergy, mobility and time to carry out, contrary to what the classical nucleation theory predicts. These variabilities give rise to different kinetic pathways and temporal evolutions, resulting in various degrees of order and disorder nanostructure in nano-sized domains that dominate in the morphological evolution and reversibility of Li metal electrode. Compared to crystalline Li, amorphous/glassy Li outperforms in cycle life in high-energy rechargeable batteries and is the desired structure to achieve high kinetic stability for long cycle life.

قيم البحث

اقرأ أيضاً

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanosca le continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.
Compton scattering is one of the promising probe to quantitate of the Li under in-operando condition, since high-energy X-rays which have high penetration power into the materials are used as incident beam and Compton scattered energy spectrum have s pecific line-shape by the elements. We develop in-operando quantitation method of Li composition in the electrodes by using line-shape (Sparameter) analysis of Compton scattered energy spectrum. In this study, we apply S-parameter analysis to commercial coin cell Li-ion rechargeable battery and obtain the variation of S-parameters during charge/discharge cycle at positive and negative electrodes. By using calibration curves for Li composition in the electrodes, we determine the change of Li composition of positive and negative electrodes through S-parameters, simultaneously.
119 - K.Ogata , K.Takei , S.Saito 2017
Despite recent significant developments of Si composites, use of silicon with significance in the anodes for Li-ion batteries is still limited. In fact, nominal energy density is to be saturated around ~750 Wh/L regardless of cell-types under the cur rent material strategies. Use of Si-rich anode can push the limit; however, the prolonged irreversible Li consumption becomes more prominent. We previously showed that repeating c-Li3.75(+{delta})Si formation/decomposition, typically recognized to degrade the anodes, can improve the irreversibility and accumulatively minimize the gross consumption. Utilizing the insights combined with prelithiation techniques, here we provide prototypic cell designs that can nonlinearly deplete the consumption.
216 - Shijun Zhao , Wei Kang 2014
The capacity and stability of constituent electrodes determine the performance of Li-ion batteries. In this study, density functional theory is employed to explore the potential application of recently synthesized two dimensional phosphorene as elect rode materials. Our results show that Li atoms can bind strongly with phosphorene monolayer and double layer with significant electron transfer. Besides, the structure of phosphorene is not much influenced by lithiation and the volume change is only 0.2%. A semiconducting to metallic transition is observed after lithiation. The diffusion barrier is calculated to 0.76 and 0.72 eV on monolayer and double layer phosphorene. The theoretical specific capacity of phosphorene monolayer is 432.79 mAh/g, which is larger than other commercial anodes materials. Our findings show that the high capacity, low open circuit voltage, small volume change and electrical conductivity of phosphorene make it a good candidate as electrode material.
Crystal structures play a vital role in determining materials properties. In Li-ion cathodes, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining Li-ion diffusion kinetics. While a perfect crystal has infinite structural coherence, a class of recently discovered high-capacity cathodes, Li-excess cation-disordered rocksalts, falls on the other end of the spectrum: Their cation sublattices are assumed to be randomly populated by Li and transition metal ions with zero configurational coherence based on conventional X-ray diffraction, such that the Li transport is purely determined by statistical effects. In contrast to this prevailing view, we reveal that cation short-range order, hidden in diffraction, is ubiquitous in these long-range disordered materials and controls the local and macroscopic environments for Li-ion transport. Our work not only discovers a crucial property that has previously been overlooked, but also provides new guidelines for designing and engineering disordered rocksalts cathode materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا