ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate-dependent morphology of Li2O2 growth in Li-O2 batteries

381   0   0.0 ( 0 )
 نشر من قبل Martin Z. Bazant
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.



قيم البحث

اقرأ أيضاً

The parasitic reactions associated with reduced oxygen species and the difficulty in achieving the high theoretical capacity have been major issues plaguing development of practical non-aqueous Li-O2 batteries. We hereby address the above issues by e xploring the synergistic effect of 2,5-di-tert-butyl-1,4- benzoquinone and H2O on the oxygen chemistry in a non-aqueous Li-O2 battery. Water stabilizes the quinone monoanion and dianion, shifting the reduction potentials of the quinone and monoanion to more positive values (vs. Li+). When water and the quinone are used together in a (largely) non-aqueous Li-O2 battery, the cell discharge operates via a two-electron oxygen reduction reaction to form Li2O2, the battery discharge voltage, rate, capacity all being considerably increased and fewer side reactions being detected; Li2O2 crystals can grow up to 30 um, more than an order of magnitude larger than cases with the quinone alone or without any additives, suggesting that water is essential to promoting a solution dominated process with the quinone on discharging. The catalytic reduction of O2 by the quinone monoanion is predominantly responsible for the attractive features mentioned above. Water stabilizes the quinone monoanion via hydrogen bond formation and by coordination of the Li+ ions, and it also helps increase the solvation, concentration, life time and diffusion length of reduced oxygen species that dictate the discharge voltage, rate and capacity of the battery. When a redox mediator is also used to aid the charging process, a high-power, high energy- density, rechargeable Li-O2 battery is obtained.
Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of metal deposits and their properties. This is vital to achieve dendrite-free Li metal anodes with high electrochemical reversibility for practical high-energy rechargeable Li batteries. Here, cryogenic-transmission electron microscopy was used to capture the dynamic growth and atomic structure of Li metal deposits at the early nucleation stage, in which a phase transition from amorphous, disordered states to a crystalline, ordered one was revealed as a function of current density and deposition time. The real-time atomic interaction over wide spatial and temporal scales was depicted by the reactive-molecular dynamics simulations. The results show that the condensation accompanied with the amorphous-to-crystalline phase transition requires sufficient exergy, mobility and time to carry out, contrary to what the classical nucleation theory predicts. These variabilities give rise to different kinetic pathways and temporal evolutions, resulting in various degrees of order and disorder nanostructure in nano-sized domains that dominate in the morphological evolution and reversibility of Li metal electrode. Compared to crystalline Li, amorphous/glassy Li outperforms in cycle life in high-energy rechargeable batteries and is the desired structure to achieve high kinetic stability for long cycle life.
120 - Tao Liu , Zigeng Liu , Gunwoo Kim 2018
Non-aqueous Li-O2 batteries are promising for next generation energy storage. New battery chemistries based on LiOH, rather than Li2O2, have recently been reported in systems with added water, one using a soluble additive LiI and the other using soli d Ru catalysts. Here, we focus on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements and mass spectrometry, we show that on discharging LiOH forms via a 4 e- oxygen reduction reaction, the H in LiOH coming solely from added H2O and the O from both O2 and H2O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li2O2, LiOH formation over Ru incurs hardly any side reactions, a critical advantage for developing a long-lived battery. An optimized metal catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is able stable towards attack by hydroxyl radicals.
Methanol occupies a central role in chemical synthesis and is considered an ideal candidate for cleaner fuel storage and transportation. It can be catalyzed from water and volatile organic compounds such as carbon dioxide, thereby offering an attract ive solution for reducing carbon emissions. However molecular-level experimental observations of the catalytic process are scarce, and most existing catalysts tend to rely on empirically optimized, expensive and complex nano- composite materials. This lack of molecular-level insights has precluded the development of simpler, more cost-effective alternatives. Here we show that graphite immersed in ultrapure water is able to spontaneously catalyze methanol from volatile organic compounds in ambient conditions. Using single-molecule resolution atomic force microscopy (AFM) in liquid, we directly observe the formation and evolution of methanol-water nanostructures at the surface of graphite. These molecularly ordered structures nucleate near catalytically active surface features such as atomic step edges and grow progressively as further methanol is being catalyzed. Complementary nuclear magnetic resonance analysis of the liquid confirms the formation of methanol and quantifies its concentration. We also show that electric fields significantly enhance the catalysis rate, even when as small as that induced by the natural surface potential of the silicon AFM tip. These findings could have a significant impact on the development of organic catalysts and on the function of nanoscale carbon devices.
The burgeoning interest in 2D black phosphorus (bP) contributes to expand its applications in countless fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemica l process. EELS-STEM analysis evidences a strong interaction between palladium and P atoms of bP nanosheets. A quantitative evaluation of this interaction comes from XAS measurements that find out a very short Pd-P distance of 2.26 {AA} proving for the first time the existence of an unprecedented Pd-P coordination bond of covalent nature. Additionally, the average Pd-P coordination number of about 1.7 reveals that bP acts as a polydentate phosphine ligand towards the surface Pd atoms of the nanoparticles, thus preventing their agglomeration and inferring structural stability. These unique properties result in a superior performance in the catalytic hydrogenation of chloronitroarenes to chloroaniline, where a higher chemoselectivity in comparison to other heterogeneous catalyst based on palladium has been observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا