ﻻ يوجد ملخص باللغة العربية
Crystal structures play a vital role in determining materials properties. In Li-ion cathodes, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining Li-ion diffusion kinetics. While a perfect crystal has infinite structural coherence, a class of recently discovered high-capacity cathodes, Li-excess cation-disordered rocksalts, falls on the other end of the spectrum: Their cation sublattices are assumed to be randomly populated by Li and transition metal ions with zero configurational coherence based on conventional X-ray diffraction, such that the Li transport is purely determined by statistical effects. In contrast to this prevailing view, we reveal that cation short-range order, hidden in diffraction, is ubiquitous in these long-range disordered materials and controls the local and macroscopic environments for Li-ion transport. Our work not only discovers a crucial property that has previously been overlooked, but also provides new guidelines for designing and engineering disordered rocksalts cathode materials.
A thick electrode with high areal capacity has been developed as a strategy for high-energy-density lithium-ion batteries, but thick electrodes have difficulties in manufacturing and limitations in ion transport. Here, we reported a new manufacturing
Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of
Using first principles structure searching with density-functional theory (DFT) we identify a novel $Fmbar{3}m$ phase of Cu$_2$P and two low-lying metastable structures, an $Ibar{4}3d$--Cu$_3$P phase, and a $Cm$--Cu$_3$P$_{11}$ phase. The computed pa
Natural abundance, impressive chemical characteristics and economic feasibility have rekindled the appeal for rechargeable sodium (Na) batteries as a practical solution for the growing energy demand, environmental sustainability and energy independen
Dendrite formation during electrodeposition while charging lithium metal batteries compromises their safety. While high shear modulus solid-ion conductors (SICs) have been prioritized to resolve pressure-driven instabilities that lead to dendrite pro