ﻻ يوجد ملخص باللغة العربية
Despite recent significant developments of Si composites, use of silicon with significance in the anodes for Li-ion batteries is still limited. In fact, nominal energy density is to be saturated around ~750 Wh/L regardless of cell-types under the current material strategies. Use of Si-rich anode can push the limit; however, the prolonged irreversible Li consumption becomes more prominent. We previously showed that repeating c-Li3.75(+{delta})Si formation/decomposition, typically recognized to degrade the anodes, can improve the irreversibility and accumulatively minimize the gross consumption. Utilizing the insights combined with prelithiation techniques, here we provide prototypic cell designs that can nonlinearly deplete the consumption.
Using a new class of (BH4)- substituted argyrodite Li6PS5Z0.83(BH4)0.17, (Z = Cl, I) solid electrolyte, Li-metal solid-state batteries operating at room temperature have been developed. The cells were made by combining the modified argyrodite with an
Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of
The capacity and stability of constituent electrodes determine the performance of Li-ion batteries. In this study, density functional theory is employed to explore the potential application of recently synthesized two dimensional phosphorene as elect
Li-ion batteries gradually lose their capacity with time and use; therefore, ageing forecasts are key to designs of battery powered systems. So far, cell-type-specific studies without standardised testing practices have lead to a variety of ageing mo
For a successful integration of silicon in high-capacity anodes of Li-ion batteries, its intrinsic capacity decay on cycling due to severe volume swelling should be minimized. In this work, Ni-Sn intermetallics are studied as buffering matrix during