ﻻ يوجد ملخص باللغة العربية
Modern-days CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different devices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to an extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time resolved micro-focused Brillouin-Light-Scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of a magnon-based data processing.
The research field of magnonics proposes a low-energy wave-logic computation technology based on spin waves to complement the established CMOS technology and to provide a basis for emerging unconventional computation architectures, e.g. neuromorphic
Spin waves are promising candidates for information processing and transmission in a broad frequency range. In the realization of magnonic devices, the frequency depended division of the spin wave frequencies is a critical function for parallel infor
Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron
A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to cont
The dependence of the spin pumping efficiency and the spin mixing conductance on the surface processing of yttrium iron garnet (YIG) before the platinum (Pt) deposition has been investigated quantitatively. The ferromagnetic resonance driven spin pum