ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Wave frequency division multiplexing in an yttrium iron garnet microstripe magnetized by inhomogeneous field

78   0   0.0 ( 0 )
 نشر من قبل Zhizhi Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin waves are promising candidates for information processing and transmission in a broad frequency range. In the realization of magnonic devices, the frequency depended division of the spin wave frequencies is a critical function for parallel information processing. In this work, we demonstrate a proof-of-concept spin-wave frequency division multiplexing method by magnetizing a homogenous magnetic microstripe with an inhomogeneous field. The symmetry breaking additional field is introduced by a permalloy stripe simply placed in lateral proximity to the waveguide. Spin waves with different frequencies can propagate independently, simultaneously and separately in space along the shared waveguide. This work brings new potentials for parallel information transmission and processing in magnonics.



قيم البحث

اقرأ أيضاً

Modern-days CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different de vices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to an extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time resolved micro-focused Brillouin-Light-Scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of a magnon-based data processing.
Wave-based data processing by spin waves and their quanta, magnons, is a promising technique to overcome the challenges which CMOS-based logic networks are facing nowadays. The advantage of these quasi-particles lies in their potential for the realiz ation of energy efficient devices on the micro- to nanometer scale due to their charge-less propagation in magnetic materials. In this paper, the frequency dependence of the propagation direction of caustic-like spin-wave beams in microstructured ferromagnets is studied by micromagnetic simulations. Based on the observed alteration of the propagation angle, an approach to spatially combine and separate spin-wave signals of different frequencies is demonstrated. The presented magnetic structure constitutes a prototype design of a passive circuit enabling frequency-division multiplexing in magnonic logic networks. It is verified that spin-wave signals of different frequencies can be transmitted through the device simultaneously without any interaction or creation of spurious signals. Due to the wave-based approach of computing in magnonic networks, the technique of frequency-division multiplexing can be the basis for parallel data processing in single magnonic devices, enabling the multiplication of the data throughput.
267 - Martin Collet 2015
Spin-orbit effects [1-4] have the potential of radically changing the field of spintronics by allowing transfer of spin angular momentum to a whole new class of materials. In a seminal letter to Nature [5], Kajiwara et al. showed that by depositing P latinum (Pt, a normal metal) on top of a 1.3 $mu$m thick Yttrium Iron Garnet (YIG, a magnetic insulator), one could effectively transfer spin angular momentum through the interface between these two different materials. The outstanding feature was the detection of auto-oscillation of the YIG when enough dc current was passed in the Pt. This finding has created a great excitement in the community for two reasons: first, one could control electronically the damping of insulators, which can offer improved properties compared to metals, and here YIG has the lowest damping known in nature; second, the damping compensation could be achieved on very large objects, a particularly relevant point for the field of magnonics [6,7] whose aim is to use spin-waves as carriers of information. However, the degree of coherence of the observed auto-oscillations has not been addressed in ref. [5]. In this work, we emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. This requires to reduce both the thickness and lateral size in order to reach full damping compensation [8] , and we show clear evidence of coherent spin-orbit torque induced auto-oscillation in micron-sized YIG discs of thickness 20 nm.
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves . In this work, we experimentally evidence the interfacial DMI in a 7~nm-thick YIG film by measuring the nonreciprocal spin wave propagation in terms of frequency, amplitude and most importantly group velocities using all electrical spin-wave spectroscopy. The velocities of propagating spin waves show chirality among three vectors, i.e. the film normal direction, applied field and spin-wave wavevector. By measuring the asymmetric group velocities, we extract a DMI constant of 16~$mu$J/m$^{2}$ which we independently confirm by Brillouin light scattering. Thickness-dependent measurements reveal that the DMI originates from the oxide interface between the YIG and garnet substrate. The interfacial DMI discovered in the ultrathin YIG films is of key importance for functional chiral magnonics as ultra-low spin-wave damping can be achieved.
Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron garnet (YIG), one of the most extensively investigated magnetic insulators, remains challenging because of the large number of atoms in a unit cell. Here, we report temperature-dependent and polarization-resolved Raman measurements in a YIG bulk crystal. We first classify the phonon modes based on their symmetry. We then develop a modified mean-field theory and define a symmetry-adapted parameter to quantify spin-phonon interaction in a phonon-mode specific way for the first time in YIG. Based on this improved mean-field theory, we discover a positive correlation between the spin-phonon interaction strength and the phonon frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا