ﻻ يوجد ملخص باللغة العربية
The research field of magnonics proposes a low-energy wave-logic computation technology based on spin waves to complement the established CMOS technology and to provide a basis for emerging unconventional computation architectures, e.g. neuromorphic or quantum computing. However, magnetic damping is a limiting factor for all-magnonic logic circuits and multi-device networks, ultimately rendering mechanisms to efficiently manipulate and amplify spin waves a necessity. In this regard, parallel pumping is a versatile tool since it allows to selectively generate and amplify spin waves. While extensively studied in microscopic systems, nano-scaled systems are lacking investigation to assess the feasibility and potential future use of parallel pumping in magnonics. Here, we investigate a longitudinally magnetized 100 nm-wide magnonic nano-conduit using space and time-resolved micro-focused Brillouin-light-scattering spectroscopy. Employing parallel pumping to generate spin waves, we observe that a non-resonant excitation of dipolar spin-waves is favored over the resonant excitation of short wavelength exchange spin waves. In addition, we utilize this technique to access the effective spin-wave relaxation time of an individual nano-conduit, observing a large relaxation time up to (115.0 +- 7.6) ns. Despite the significant decrease of the ellipticity of the magnetization precession in the investigated nano-conduit, a reasonably small threshold is found rendering parallel parametric amplification feasible on the nano-scale.
Magnonics attracts increasing attention in the view of novel low-energy computation technologies based on spin waves. Recently, spin-wave propagation in longitudinally magnetized nano-scaled spin-wave conduits was demonstrated, proving the fundamenta
Modern-days CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different de
We present the experimental demonstration of the parallel parametric generation of spin-waves in a microscaled yttrium iron garnet waveguide with nanoscale thickness. Using Brillouin light scattering microscopy, we observe the excitation of the first
We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one-(1D), two- (2D) and three-dimensions (3D). We have solved Landau-Lifshitz equation with the use of plane wave method, finite element method i
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipol