ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametric generation of spin waves in nano-scaled magnonic conduits

79   0   0.0 ( 0 )
 نشر من قبل Bj\\\"orn Heinz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The research field of magnonics proposes a low-energy wave-logic computation technology based on spin waves to complement the established CMOS technology and to provide a basis for emerging unconventional computation architectures, e.g. neuromorphic or quantum computing. However, magnetic damping is a limiting factor for all-magnonic logic circuits and multi-device networks, ultimately rendering mechanisms to efficiently manipulate and amplify spin waves a necessity. In this regard, parallel pumping is a versatile tool since it allows to selectively generate and amplify spin waves. While extensively studied in microscopic systems, nano-scaled systems are lacking investigation to assess the feasibility and potential future use of parallel pumping in magnonics. Here, we investigate a longitudinally magnetized 100 nm-wide magnonic nano-conduit using space and time-resolved micro-focused Brillouin-light-scattering spectroscopy. Employing parallel pumping to generate spin waves, we observe that a non-resonant excitation of dipolar spin-waves is favored over the resonant excitation of short wavelength exchange spin waves. In addition, we utilize this technique to access the effective spin-wave relaxation time of an individual nano-conduit, observing a large relaxation time up to (115.0 +- 7.6) ns. Despite the significant decrease of the ellipticity of the magnetization precession in the investigated nano-conduit, a reasonably small threshold is found rendering parallel parametric amplification feasible on the nano-scale.



قيم البحث

اقرأ أيضاً

Magnonics attracts increasing attention in the view of novel low-energy computation technologies based on spin waves. Recently, spin-wave propagation in longitudinally magnetized nano-scaled spin-wave conduits was demonstrated, proving the fundamenta l feasibility of magnonics at the sub-100 nm scale. Transversely magnetized nano-conduits, which are of great interest in this regard as they offer a large group velocity and a potentially chirality-based protected transport of energy, have not yet been investigated due to their complex internal magnetic field distribution. Here, we present a study of propagating spin waves in a transversely magnetized nanoscopic yttrium iron garnet conduit of 50 nm width. Space and time-resolved micro-focused Brillouin-light-scattering spectroscopy is employed to measure the spin-wave group velocity and decay length. A long-range spin-wave propagation is observed with a decay length of up to (8.0+-1.5) {mu}m and a large spin-wave lifetime of up to (44.7+-9.1) ns. The results are supported with micromagnetic simulations, revealing a single-mode dispersion relation in contrast to the common formation of localized edge modes for microscopic systems. Furthermore, a frequency non-reciprocity for counter-propagating spin waves is observed in the simulations and the experiment, caused by the trapezoidal cross-section of the structure. The revealed long-distance spin-wave propagation on the nanoscale is particularly interesting for an application in spin-wave devices, allowing for long-distance transport of information in magnonic circuits, as well as novel low-energy device architectures.
Modern-days CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different de vices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to an extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time resolved micro-focused Brillouin-Light-Scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of a magnon-based data processing.
We present the experimental demonstration of the parallel parametric generation of spin-waves in a microscaled yttrium iron garnet waveguide with nanoscale thickness. Using Brillouin light scattering microscopy, we observe the excitation of the first and second waveguide modes generated by a stripline microwave pumping source. Micromagnetic simulations reveal the wave vector of the parametrically generated spin-waves. Based on analytical calculations, which are in excellent agreement with our experiments and simulations, we prove that the spin-wave radiation losses are the determinative term of the parametric instability threshold in this miniaturized system. The used method enables the direct excitation and amplification of nanometer spin-waves dominated by exchange interactions. Our results pave the way for integrated magnonics based on insulating nano-magnets.
We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one-(1D), two- (2D) and three-dimensions (3D). We have solved Landau-Lifshitz equation with the use of plane wave method, finite element method i n frequency domain and micromagnetic simulations in time domain to find the dynamics of spin waves and spectrum of their eigenmodes. The spin wave spectra were calculated in linear approximation. In this paper we show usefulness of these methods in calculations of various types of spin waves. We demonstrate the surface character of the Damon-Eshbach spin wave in 1D magnonic crystals and change of its surface localization with the band number and wavenumber in the first Brillouin zone. The surface property of the spin wave excitation is further exploited by covering plate of the magnonic crystal with conductor. The band structure in 2D magnonic crystals is complex due to additional spatial inhomogeneity introduced by the demagnetizing field. This modifies spin wave dispersion, makes the band structure of magnonic crystals strongly dependent on shape of the inclusions and type of the lattice. The inhomogeneity of the internal magnetic field becomes unimportant for magnonic crystals with small lattice constant, where exchange interactions dominate. For 3D magnonic crystals, characterized by small lattice constant, wide magnonic band gap is found. We show that the spatial distribution of different materials in magnonic crystals can be explored for tailored effective damping of spin waves.
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipol ar field landscape. While these systems have yielded impressive initial results, developing rapid, scaleable means to access abroad range of spectrally-distinct microstates is an open research problem.We present a scheme whereby square artificial spin ice is modified by widening a staircase subset of bars relative to the rest of the array, allowing preparation of any ordered vertex state via simple global-field protocols. Available microstates range from the system ground-state to high-energy monopole states, with rich and distinct microstate-specific magnon spectra observed. Microstate-dependent mode-hybridisation and anticrossings are observed at both remanence and in-field with dynamic coupling strength tunable via microstate-selection. Experimental coupling strengths are found up to g / 2$pi$ = 0.15 GHz. Microstate control allows fine mode-frequency shifting, gap creation and closing, and active mode number selection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا