ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Phonon Interaction in Yttrium Iron Garnet

182   0   0.0 ( 0 )
 نشر من قبل Kevin Olsson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron garnet (YIG), one of the most extensively investigated magnetic insulators, remains challenging because of the large number of atoms in a unit cell. Here, we report temperature-dependent and polarization-resolved Raman measurements in a YIG bulk crystal. We first classify the phonon modes based on their symmetry. We then develop a modified mean-field theory and define a symmetry-adapted parameter to quantify spin-phonon interaction in a phonon-mode specific way for the first time in YIG. Based on this improved mean-field theory, we discover a positive correlation between the spin-phonon interaction strength and the phonon frequency.



قيم البحث

اقرأ أيضاً

88 - J. Forster , S. Wintz , J. Bailey 2019
Time-resolved scanning transmission x-ray microscopy (TR-STXM) has been used for the direct imaging of spin wave dynamics in thin film yttrium iron garnet (YIG) with spatial resolution in the sub 100 nm range. Application of this x-ray transmission t echnique to single crystalline garnet films was achieved by extracting a lamella (13x5x0.185 $mathrm{mu m^3}$) of liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 100~nm and 10~$mathrm{mu}$m. The results were compared to theoretical models. Here, the widely used approximate dispersion equation for dipole-exchange spin waves proved to be insufficient for describing the observed Damon-Eshbach type modes. For achieving an accurate description, we made use of the full analytical theory taking mode-hybridization effects into account.
The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic co ntact (detector) on the magnetic film, spatially separated from the first contact that is used to apply the temperature bias (injector). Magnon-polarons are hybridized lattice and spin waves in magnetic materials, generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett. textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms of magnon-polaron formation. Here we report the observation of magnon-polarons in emph{nonlocal} magnon spin injection/detection devices for various injector-detector spacings and sample temperatures. Unexpectedly, we find that the magnon-polaron resonances can suppress rather than enhance the nonlocal SSE. Using finite element modelling we explain our observations as a competition between the SSE and spin diffusion in YIG. These results give unprecedented insights into the magnon-phonon interaction in a key magnetic material.
We present the experimental demonstration of the parallel parametric generation of spin-waves in a microscaled yttrium iron garnet waveguide with nanoscale thickness. Using Brillouin light scattering microscopy, we observe the excitation of the first and second waveguide modes generated by a stripline microwave pumping source. Micromagnetic simulations reveal the wave vector of the parametrically generated spin-waves. Based on analytical calculations, which are in excellent agreement with our experiments and simulations, we prove that the spin-wave radiation losses are the determinative term of the parametric instability threshold in this miniaturized system. The used method enables the direct excitation and amplification of nanometer spin-waves dominated by exchange interactions. Our results pave the way for integrated magnonics based on insulating nano-magnets.
126 - Z. Qiu , K. Ando , K. Uchida 2013
A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to cont ribute to large spin mixing conductance. The spin mixing conductance is obtained to be $1.3times10^{18} rm{m^{-2}}$ at the well-controlled Pt/YIG interface, which is close to a theoretical prediction.
In spintronics the propagation of spin-wave excitations in magnetically ordered materials can also be used to transport and process information. One of the most popular materials in this regard is the ferrimagnetic insulator yttrium-iron-garnet due i ts exceptionally small spin-wave damping parameter. While the small relaxation rate allows for large propagation length of magnetic excitations, it also leads to non-locality of the magnetic properties. By imaging spin waves their band structure is mapped. In doing so wave vector selection is shown to suppress dispersion effects to a large extent allowing for local measurements of spin relaxation. Moreover we demonstrate even higher control of magnon propagation by employing the wave vector selectivity near an avoided crossing of different spin-wave modes where the group velocity approaches zero. Here local engineering of the dispersion allows constructing magnonic waveguides and at the same time reveals the local relaxation properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا