ﻻ يوجد ملخص باللغة العربية
Batch Bayesian optimisation (BO) has been successfully applied to hyperparameter tuning using parallel computing, but it is wasteful of resources: workers that complete jobs ahead of others are left idle. We address this problem by developing an approach, Penalising Locally for Asynchronous Bayesian Optimisation on $k$ workers (PLAyBOOK), for asynchronous parallel BO. We demonstrate empirically the efficacy of PLAyBOOK and its variants on synthetic tasks and a real-world problem. We undertake a comparison between synchronous and asynchronous BO, and show that asynchronous BO often outperforms synchronous batch BO in both wall-clock time and number of function evaluations.
The popularity of Bayesian optimization methods for efficient exploration of parameter spaces has lead to a series of papers applying Gaussian processes as surrogates in the optimization of functions. However, most proposed approaches only allow the
We consider parallel asynchronous Markov Chain Monte Carlo (MCMC) sampling for problems where we can leverage (stochastic) gradients to define continuous dynamics which explore the target distribution. We outline a solution strategy for this setting
Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the repres
This paper provides an analysis of the tradeoff between asymptotic bias (suboptimality with unlimited data) and overfitting (additional suboptimality due to limited data) in the context of reinforcement learning with partial observability. Our theore
Compression of Neural Networks (NN) has become a highly studied topic in recent years. The main reason for this is the demand for industrial scale usage of NNs such as deploying them on mobile devices, storing them efficiently, transmitting them via