ﻻ يوجد ملخص باللغة العربية
The real-world data is often susceptible to label noise, which might constrict the effectiveness of the existing state of the art algorithms for ordinal regression. Existing works on ordinal regression do not take label noise into account. We propose a theoretically grounded approach for class conditional label noise in ordinal regression problems. We present a deep learning implementation of two commonly used loss functions for ordinal regression that is both - 1) robust to label noise, and 2) rank consistent for a good ranking rule. We verify these properties of the algorithm empirically and show robustness to label noise on real data and rank consistency. To the best of our knowledge, this is the first approach for robust ordinal regression models.
Improper or erroneous labelling can pose a hindrance to reliable generalization for supervised learning. This can have negative consequences, especially for critical fields such as healthcare. We propose an effective new approach for learning under e
Long-tailed learning has attracted much attention recently, with the goal of improving generalisation for tail classes. Most existing works use supervised learning without considering the prevailing noise in the training dataset. To move long-tailed
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them in
Ordinal regression is aimed at predicting an ordinal class label. In this paper, we consider its semi-supervised formulation, in which we have unlabeled data along with ordinal-labeled data to train an ordinal regressor. There are several metrics to
We study the problem of robust learning under clean-label data-poisoning attacks, where the attacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algorithm into making mistakes on specific test instances at