ﻻ يوجد ملخص باللغة العربية
The graphene edge state has long been predicted to be a zero energy, one-dimensional electronic waveguide mode that dominates transport in neutral graphene nanostructures, with potential application to graphene devices. However, its exceptional properties have been observed in only a few cases, each employing novel fabrication methods without a clear path to large-scale integration. We show here that interconnected edge-state networks can be produced using non-conventional facets of electronics grade silicon carbide wafers and scalable lithography, which cuts the epitaxial graphene and apparently fuses its edge atoms to the silicon carbide substrate. Measured epigraphene edge state (EGES) conduction is ballistic with mean free paths exceeding tens of microns, thousands of times greater than for the diffusive 2D bulk. It is essentially independent of temperature, decoupled from the bulk and substantially immune to disorder. Remarkably, EGES transport involves a non-degenerate conductance channel that is pinned at zero energy, yet it does not generate a Hall voltage, implying balanced electron and hole components. These properties, observed at all tested temperatures, magnetic fields, and charge densities, are not predicted by present theories, and point to a zero-energy spin one-half quasiparticle, composed of half an electron and a half a hole moving in opposite directions.
We investigate an effective low energy theory of HgTe quantum wells near their mass inversion thickness in a perpendicular magnetic field. By comparison of the effective band structure with a more elaborated and well-established model, the parameter
We report electrical conductance measurements of Bi nanocontacts created by repeated tip-surface indentation using a scanning tunneling microscope at temperatures of 4 K and 300 K. As a function of the elongation of the nanocontact we measure robust,
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns ha
The recent observation of non-classical electron transport regimes in two-dimensional materials has called for new high-resolution non-invasive techniques to locally probe electronic properties. We introduce a novel hybrid scanning probe technique to
A two-dimensional topological insulator (2DTI) has an insulating bulk and helical spin-polarised edge modes robust to backscattering by non-magnetic disorder. While ballistic transport has been demonstrated in 2DTIs over short distances, larger sampl