ﻻ يوجد ملخص باللغة العربية
Dipole spin-wave states of atomic ensembles with wave vector ${bf k}(omega)$ mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario in quantum optics. We propose and demonstrate an optical technique to efficiently access these states. In particular, subnanosecond laser pulses shaped by a home-developed wideband modulation method are applied to shift the spin wave in ${bf k}$ space with state-dependent geometric phase patterning, in an error-resilient fashion and on timescales much faster than spontaneous emission. We verify this control through the redirection, switch off, and recall of collectively enhanced emission from a $^{87}$Rb gas with $sim 75%$ single-step efficiency. Our work represents a first step toward efficient control of electric dipole spin waves for studying many-body dissipative dynamics of excited gases, as well as for numerous quantum optical applications.
We demonstrate strong confinement of the optical field by depositing a micron sized metallic disk on a planar interferential mirror. Zero dimensional Tamm plasmon modes are evidenced both experimentally and theoretically, with a lateral confinement l
Photon emission and absorption by an individual qubit are essential elements for the quantum manipulation of light. Here we demonstrate the controllability of spontaneous emission of a qubit in various electromagnetic environments. The parameter regi
We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to
Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous va
Population inversion on the 5D-6P transition in Rb atoms produced by cw excitation at different wavelengths has been analysed by comparing the generated mid-IR radiation at 5.23 um originated from amplified spontaneous emission and isotropic blue flu