ﻻ يوجد ملخص باللغة العربية
We demonstrate strong confinement of the optical field by depositing a micron sized metallic disk on a planar interferential mirror. Zero dimensional Tamm plasmon modes are evidenced both experimentally and theoretically, with a lateral confinement limited to the disk area and strong coupling to TE polarized fields. Single quantum dots deterministically coupled to these modes are shown to experience acceleration of their spontaneous emission when spectrally resonant with the mode. For quantum dots spectrally detuned from the confined Tamm Plasmon mode, an inhibition of spontaneous emission by a factor 40 is observed, a record value in the optical domain.
We investigate theoretically the non-Markovian dynamics of a degenerate V-type quantum emitter in the vicinity of a metallic nanosphere, a system that exhibits quantum interference in spontaneous emission due to the anisotropic Purcell effect. We cal
Dipole spin-wave states of atomic ensembles with wave vector ${bf k}(omega)$ mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario
Photon emission and absorption by an individual qubit are essential elements for the quantum manipulation of light. Here we demonstrate the controllability of spontaneous emission of a qubit in various electromagnetic environments. The parameter regi
We study the spontaneous decoherence of the coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry breaking field or surrounding environmen
Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous va