ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-correlating Planck with VST ATLAS LRGs: a new test for the ISW effect in the Southern Hemisphere

73   0   0.0 ( 0 )
 نشر من قبل Behzad Ansarinejad Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Integrated Sachs-Wolfe (ISW) effect probes the late-time expansion history of the universe, offering direct constraints on dark energy. Here we present our measurements of the ISW signal at redshifts of $bar{z}=0.35$, $0.55$ and $0.68$, using the cross-correlation of the Planck CMB temperature map with $sim0.5$ million Luminous Red Galaxies (LRGs) selected from the VST ATLAS survey. We then combine these with previous measurements based on WMAP and similar SDSS LRG samples, providing a total sample of $sim2.1$ million LRGs covering $sim12000$ deg$^2$ of sky. At $bar{z}=0.35$ and $bar{z}=0.55$ we detect the ISW signal at $1.2sigma$ and $2.3sigma$ (or $2.6sigma$ combined), in agreement with the predictions of $Lambda$CDM. We verify these results by repeating the measurements using the BOSS LOWZ and CMASS, spectroscopically confirmed LRG samples. We also detect the ISW effect in three magnitude limited ATLAS+SDSS galaxy samples extending to $zapprox0.4$ at $sim2sigma$ per sample. However, we do not detect the ISW signal at $bar{z}=0.68$ when combining the ATLAS and SDSS results. Further tests using spectroscopically confirmed eBOSS LRGs at this redshift remain inconclusive due to the current low sky coverage of the survey. If the ISW signal is shown to be redshift dependent in a manner inconsistent with the predictions of $Lambda$CDM, it could open the door to alternative theories such as modified gravity. It is therefore important to repeat the high redshift ISW measurement using the completed eBOSS sample, as well as deeper upcoming surveys such as DESI and LSST.

قيم البحث

اقرأ أيضاً

66 - U. Sawangwit 2009
We present the cross-correlation of the density map of LRGs and the temperature fluctuation in the CMB as measured by the WMAP5 observations. The LRG samples were extracted from imaging data of the SDSS based on two previous spectroscopic redshift su rveys, the SDSS-LRG and the 2SLAQ surveys at average redshifts z~0.35 and z~0.55. In addition we have added a higher-redshift photometric LRG sample based on the selection of the AAOmega LRG redshift survey at z~0.7. The total LRG sample thus comprises 1.5 million galaxies, sampling a redshift range of 0.2 < z < 0.9 over ~7600 square degrees of the sky, probing a total cosmic volume of ~5.5 h^{-3} Gpc^3. We find that the new LRG sample at z~0.7 shows very little positive evidence for the ISW effect. Indeed, the cross-correlation is negative out to ~1 deg. The standard LCDM model is rejected at ~2-3% significance by the new LRG data. We then performed a new test on the robustness of the LRG ISW detections at z~0.35 and 0.55. We made 8 rotations through 360deg of the CMB maps with respect to the LRG samples around the galactic pole. We find that in both cases there are stronger effects at angles other than zero. This implies that the z~0.35 and 0.55 ISW detections may still be subject to systematic errors which combined with the known sizeable statistical errors may leave these ISW detections looking unreliable. We have further made the rotation test on several other samples where ISW detections have been claimed and find that they also show peaks when rotated. We conclude that in the samples we have tested the ISW effect may be absent and we argue that this result may not be in contradiction with previous results.
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and tes t theories of modified gravity. We detect a cross-correlation between DESI-like luminous red galaxies (LRGs) selected from DECaLS imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of $S/N = 27.2$ over scales $ell_{rm min} = 30$, $ell_{rm max} = 1000$. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as $s = 0.999 pm 0.015$, and find corresponding corrections on the order of a few percent for $C^{kappa g}_{ell}, C^{gg}_{ell}$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation $z_{rm eff} approx 0.68$ using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at $z_{rm eff}$. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.
We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Sequ ence Cluster Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, $xi^{ y-kappa}$ and $xi^ {y-gamma_{t}}$, and a Fourier space estimator, $C_{ell}^{y-kappa}$, in our analysis. We detect a significant correlation out to three degrees of angular separation on the sky. Based on statistical noise only, we can report 13$sigma$ and 17$sigma$ detections of the cross-correlation using the configuration-space $y-kappa$ and $y-gamma_{t}$ estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 6$sigma$ and 8$sigma$, respectively. A similar level of detection is obtained from the Fourier-space estimator, $C_{ell}^{y-kappa}$. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OWLS suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable AGN feedback that removes large quantities of hot gas from galaxy groups and WMAP-7yr best-fit cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology over-predict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed `universal pressure profile.
We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64-antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. Fo r transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor, and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease reliance on accurate beam calibration, we focus on calibrating sources in a narrow declination range from -46d to -40d. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte-Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations. 90% of these confirm and refine a power-law model for flux density. Of note is the new Pictor A flux model, which is accurate to 1.4% and shows, in contrast to previous models, that between 100 MHz and 2 GHz, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382+/-5.4 Jy, and a spectral index of -0.76+/-0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band, and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor As spectrum make it an excellent calibrator for experiments seeking to measure 21cm emission from the Epoch of Reionization.
85 - N. Taburet 2010
If Dark Energy introduces an acceleration in the universal expansion then large scale gravitational potential wells should be shrinking, causing a blueshift in the CMB photons that cross such structures (Integrated Sachs-Wolfe effect, [ISW]). Galaxy clusters are known to probe those potential wells. In these objects, CMB photons also experience inverse Compton scattering off the hot electrons of the intra-cluster medium, and this results in a distortion with a characteristic spectral signature of the CMB spectrum (the so-called thermal Sunyaev-Zeldovich effect, [tSZ]). Since both the ISW and the tSZ effects take place in the same potential wells, they must be spatially correlated. We present how this cross ISW-tSZ signal can be detected in a CMB-data contained way by using the frequency dependence of the tSZ effect in multi frequency CMB experiments like {it Planck}, {em without} requiring the use of external large scale structure tracers data. We find that by masking low redshift clusters, the shot noise level decreases significantly, boosting the signal to noise ratio of the ISW--tSZ cross correlation. We also find that galactic and extragalactic dust residuals must be kept at or below the level of ~0.04 muK^2 at l=10, a limit that is a factor of a few below {it Planck}s expectations for foreground subtraction. If this is achieved, CMB observations of the ISW-tSZ cross correlation should also provide an independent probe for the existence of Dark Energy and the amplitude of density perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا