ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-correlating Planck tSZ with RCSLenS weak lensing: Implications for cosmology and AGN feedback

92   0   0.0 ( 0 )
 نشر من قبل Alireza Hojjati
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Sequence Cluster Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, $xi^{ y-kappa}$ and $xi^ {y-gamma_{t}}$, and a Fourier space estimator, $C_{ell}^{y-kappa}$, in our analysis. We detect a significant correlation out to three degrees of angular separation on the sky. Based on statistical noise only, we can report 13$sigma$ and 17$sigma$ detections of the cross-correlation using the configuration-space $y-kappa$ and $y-gamma_{t}$ estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 6$sigma$ and 8$sigma$, respectively. A similar level of detection is obtained from the Fourier-space estimator, $C_{ell}^{y-kappa}$. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OWLS suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable AGN feedback that removes large quantities of hot gas from galaxy groups and WMAP-7yr best-fit cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology over-predict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed `universal pressure profile.

قيم البحث

اقرأ أيضاً

We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zeldovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed highe r-order statistics, the cumulants and cumulant correlators, to analyze non-Gaussianity in real space, as well as corresponding polyspectra in the harmonic domain. Using these moments, we derive analytical expressions for the joint two-point probability distribution function (2PDF) for smoothed tSZ (y_s) and convergence (kappa_s) maps. The presence of tomographic information allows us to study the evolution of higher order {em mixed} tSZ-weak lensing statistics with redshift. We express the joint PDFs p_{kappa y}(kappa_s,y_s) in terms of individual one-point PDFs (p_{kappa}(kappa_s), p_y(y_s)) and the relevant bias functions (b_{kappa}(kappa_s), b_y(y_s)). Analytical results for two different regimes are presented that correspond to the small and large angular smoothing scales. Results are also obtained for corresponding {em hot spots} in the tSZ and convergence maps. In addition to results based on hierarchical techniques and perturbative methods, we present results of calculations based on the lognormal approximation. The analytical expressions derived here are generic and applicable to cross-correlation studies of arbitrary tracers of large scale structure including e.g. that of tSZ and soft X-ray background.
We forecast astrophysical and cosmological parameter constraints from synergies between 21 cm intensity mapping and wide field optical galaxy surveys (both spectroscopic and photometric) over $z sim 0-3$. We focus on the following survey combinations in this work: (i) a CHIME-like and DESI-like survey in the northern hemisphere, (ii) an LSST-like and SKA I MID-like survey and (ii) a MeerKAT-like and DES-like survey in the southern hemisphere. We work with the $Lambda$CDM cosmological model having parameters ${h, Omega_m, n_s, Omega_b, sigma_8}$, parameters $v_{c,0}$ and $beta$ representing the cutoff and slope of the HI-halo mass relation in the previously developed HI halo model framework, and a parameter $Q$ that represents the scale dependence of the optical galaxy bias. Using a Fisher forecasting framework, we explore (i) the effects of the HI and galaxy astrophysical uncertainties on the cosmological parameter constraints, assuming priors from the present knowledge of the astrophysics, (ii) the improvements on astrophysical constraints over their current priors in the three configurations considered, (ii) the tightening of the constraints on the parameters relative to the corresponding HI auto-correlation surveys alone.
In this paper we present results of applying the shear-ratio method to the RCSLenS data. The method takes the ratio of the mean of the weak lensing tangential shear signal about galaxy clusters, averaged over all clusters of the same redshift, in mul tiple background redshift bins. In taking a ratio the mass-dependency of the shear signal is cancelled-out leaving a statistic that is dependent on the geometric part of the lensing kernel only. We apply this method to 535 clusters and measure a cosmology-independent distance-redshift relation to redshifts z~1. In combination with Planck data the method lifts the degeneracies in the CMB measurements, resulting in cosmological parameter constraints of OmegaM=0.31 +/- 0.10 and w0 = -1.02 +/- 0.37, for a flat wCDM cosmology.
The possibly unbiased selection process in surveys of the Sunyaev Zeldovich effect can unveil new populations of galaxy clusters. We performed a weak lensing analysis of the PSZ2LenS sample, i.e. the PSZ2 galaxy clusters detected by the Planck missio n in the sky portion covered by the lensing surveys CFHTLenS and RCSLenS. PSZ2LenS consists of 35 clusters and it is a statistically complete and homogeneous subsample of the PSZ2 catalogue. The Planck selected clusters appear to be unbiased tracers of the massive end of the cosmological haloes. The mass concentration relation of the sample is in excellent agreement with predictions from the Lambda cold dark matter model. The stacked lensing signal is detected at 14 sigma significance over the radial range 0.1<R<3.2 Mpc/h, and is well described by the cuspy dark halo models predicted by numerical simulations. We confirmed that Planck estimated masses are biased low by b_SZ= 27+-11(stat)+-8(sys) per cent with respect to weak lensing masses. The bias is higher for the cosmological subsample, b_SZ= 40+-14+-(stat)+-8(sys) per cent.
Cluster weak lensing is a sensitive probe of cosmology, particularly the amplitude of matter clustering $sigma_8$ and matter density parameter $Omega_m$. The main nuisance parameter in a cluster weak lensing cosmological analysis is the scatter betwe en the true halo mass and the relevant cluster observable, denoted $sigma_{ln Mc}$. We show that combining the cluster weak lensing observable $Delta Sigma$ with the projected cluster-galaxy cross-correlation function $w_{p,cg}$ and galaxy auto-correlation function $w_{p,gg}$ can break the degeneracy between $sigma_8$ and $sigma_{ln Mc}$ to achieve tight, percent-level constraints on $sigma_8$. Using a grid of cosmological N-body simulations, we compute derivatives of $Delta Sigma$, $w_{p,cg}$, and $w_{p,gg}$ with respect to $sigma_8$, $Omega_m$, $sigma_{ln Mc}$ and halo occupation distribution (HOD) parameters describing the galaxy population. We also compute covariance matrices motivated by the properties of the Dark Energy Suvery (DES) cluster and weak lensing survey and the BOSS CMASS galaxy redshift survey. For our fiducial scenario combining $Delta Sigma$, $w_{p,cg}$, and $w_{p,gg}$ measured over $0.3-30.0 ; h^{-1} ; mathrm{Mpc}$, for clusters at $z=0.35-0.55$ above a mass threshold $M_capprox 2times 10^{14} ; h^{-1} ; mathrm{M_{odot}}$, we forecast a $1.4%$ constraint on $sigma_8$ while marginalizing over $sigma_{ln Mc}$ and all HOD parameters. Reducing the mass threshold to $1times 10^{14} ; h^{-1} ; mathrm{M_{odot}}$ and adding a $z=0.15-0.35$ redshift bin sharpens this constraint to $0.8%$. The small scale $(r_p < 3.0 ; h^{-1} ; mathrm{Mpc})$ ``mass function and large scale $(r_p > 3.0 ; h^{-1} ; mathrm{Mpc})$ ``halo-mass cross-correlation regimes of $Delta Sigma$ have comparable constraining power, allowing internal consistency tests from such an analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا