ترغب بنشر مسار تعليمي؟ اضغط هنا

The ISW-tSZ cross correlation: ISW extraction out of pure CMB data

142   0   0.0 ( 0 )
 نشر من قبل Nicolas Taburet
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Taburet




اسأل ChatGPT حول البحث

If Dark Energy introduces an acceleration in the universal expansion then large scale gravitational potential wells should be shrinking, causing a blueshift in the CMB photons that cross such structures (Integrated Sachs-Wolfe effect, [ISW]). Galaxy clusters are known to probe those potential wells. In these objects, CMB photons also experience inverse Compton scattering off the hot electrons of the intra-cluster medium, and this results in a distortion with a characteristic spectral signature of the CMB spectrum (the so-called thermal Sunyaev-Zeldovich effect, [tSZ]). Since both the ISW and the tSZ effects take place in the same potential wells, they must be spatially correlated. We present how this cross ISW-tSZ signal can be detected in a CMB-data contained way by using the frequency dependence of the tSZ effect in multi frequency CMB experiments like {it Planck}, {em without} requiring the use of external large scale structure tracers data. We find that by masking low redshift clusters, the shot noise level decreases significantly, boosting the signal to noise ratio of the ISW--tSZ cross correlation. We also find that galactic and extragalactic dust residuals must be kept at or below the level of ~0.04 muK^2 at l=10, a limit that is a factor of a few below {it Planck}s expectations for foreground subtraction. If this is achieved, CMB observations of the ISW-tSZ cross correlation should also provide an independent probe for the existence of Dark Energy and the amplitude of density perturbations.



قيم البحث

اقرأ أيضاً

We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so -called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Any Dark Energy (DE) or Modified Gravity (MG) model that deviates from a cosmological constant requires a consistent treatment of its perturbations, which can be described in terms of an effective entropy perturbation and an anisotropic stress. We ha ve considered a recently proposed generic parameterisation of DE/MG perturbations and compared it to data from the Planck satellite and six galaxy catalogues, including temperature-galaxy (Tg), CMB lensing-galaxy and galaxy-galaxy (gg) correlations. Combining these observables of structure formation with tests of the background expansion allows us to investigate the properties of DE/MG both at the background and the perturbative level. Our constraints on DE/MG are mostly in agreement with the cosmological constant paradigm, while we also find that the constraint on the equation of state w (assumed to be constant) depends on the model assumed for the perturbation evolution. We obtain $w=-0.92^{+0.20}_{-0.16}$ (95% CL; CMB+gg+Tg) in the entropy perturbation scenario; in the anisotropic stress case the result is $w=-0.86^{+0.17}_{-0.16}$. Including the lensing correlations shifts the results towards higher values of w. If we include a prior on the expansion history from recent Baryon Acoustic Oscillations (BAO) measurements, we find that the constraints tighten closely around $w=-1$, making it impossible to measure any DE/MG perturbation evolution parameters. If, however, upcoming observations from surveys like DES, Euclid or LSST show indications for a deviation from a cosmological constant, our formalism will be a useful tool towards model selection in the dark sector.
We estimate the local density field in redshift shells to a maximum redshift of z=0.3, using photometric redshifts for the 2MASS galaxy catalogue, matched to optical data from the SuperCOSMOS galaxy catalogue. This density-field map is used to predic t the Integrated Sachs-Wolfe (ISW) CMB anisotropies that originate within the volume at z<0.3. We investigate the impact of this estimated ISW foreground signal on large-scale anomalies in the WMAP CMB data. We find that removal of the foreground ISW signal from WMAP data reduces the significance of a number of reported large-scale anomalies in the CMB, including the low quadrupole power and the apparent alignment between the CMB quadrupole and octopole.
The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 2 1-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the possibility of detecting the ISW through cross-correlations between the CMBR anisotropies and redshifted 21-cm observations. Assuming that the HI traces the dark matter, we find that the ISW-HI cross-correlation angular power spectrum at an angular multipole l is proportional to the dark matter power spectrum evaluated at the comoving wave number l/r, where r is the comoving distance to the redshift from which the HI signal originated. The amplitude of the cross-correlation signal depends on parameters related to the HI distribution and the growth of cosmological perturbations. However the cross-correlation is extremely weak as compared to the CMBR anisotropies and the predicted HI signal. As a consequence the cross-correlation signal is smaller than the cosmic variance, and a statistically significant detection is not very likely.
The imprints of large-scale structures on the Cosmic Microwave Background can be studied via the CMB lensing and Integrated Sachs-Wolfe (ISW) signals. In particular, the stacked ISW signal around supervoids has been claimed in several works to be ano malously high. In this study, we find cluster and void superstructures using four tomographic redshift bins with $0<z<0.8$ from the DESI Legacy Survey, and measure the stacked CMB lensing and ISW signals around them. To compare our measurements with $Lambda$CDM model predictions, we construct a mock catalogue with matched galaxy number density and bias, and apply the same photo-$z$ uncertainty as the data. The consistency between the mock and data is verified via the stacked galaxy density profiles around the superstructures and their quantity. The corresponding lensing convergence and ISW maps are then constructed and compared. The stacked lensing signal agrees with data well except at the highest redshift bin in density peaks, where the mock prediction is significantly higher, by approximately a factor 1.3. The stacked ISW signal is generally consistent with the mock prediction. We do not obtain a significant signal from voids, $A_{rm ISW}=-0.10pm0.69$, and the signal from clusters, $A_{rm ISW}=1.52pm0.72$, is at best weakly detected. However, these results are strongly inconsistent with previous claims of ISW signals at many times the level of the $Lambda$CDM prediction. We discuss the comparison of our results with past work in this area, and investigate possible explanations for this discrepancy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا