ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Correlation of Planck CMB Lensing with DESI-Like LRGs

92   0   0.0 ( 0 )
 نشر من قبل Ellie Kitanidis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between DESI-like luminous red galaxies (LRGs) selected from DECaLS imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of $S/N = 27.2$ over scales $ell_{rm min} = 30$, $ell_{rm max} = 1000$. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as $s = 0.999 pm 0.015$, and find corresponding corrections on the order of a few percent for $C^{kappa g}_{ell}, C^{gg}_{ell}$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation $z_{rm eff} approx 0.68$ using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at $z_{rm eff}$. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.



قيم البحث

اقرأ أيضاً

104 - Zeyang Sun 2021
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of th e large scale structure of the universe, over group samples of various redshift, mass and richness $N_{rm g}$ and over various scale cuts. The overall S/N is 39 for a conservative sample with $N_{rm g}geq 5$, and increases to $48$ for the sample with $N_{rm g}geq 2$. Adopting the Planck 2018 cosmology, we constrain the density bias of groups with $N_{rm g}geq 5$ as $b_{rm g}=1.31pm 0.10$, $2.22pm 0.10$, $3.52pm 0.20$ at $0.1<zleq 0.33$, $0.33<zleq 0.67$, $0.67<zleq1$ respectively. The value-added group catalog allows us to detect the dependence of bias on group mass with high significance. It also allows us to compare the measured bias with the theoretically predicted one using the estimated group mass. We find excellent agreement for the two high redshift bins. However, it is lower than the theory by $sim 3sigma$ for the lowest redshift bin. Another interesting finding is the significant impact of the thermal Sunyaev Zeldovich (tSZ). It contaminates the galaxy group-CMB lensing cross-correlation at $sim 30%$ level, and must be deprojected first in CMB lensing reconstruction.
We present the first study of cross-correlation between Cosmic Microwave Background (CMB) gravitational lensing potential map measured by the $Planck$ satellite and $zgeq 0.8$ galaxies from the photometric redshift catalogues from Herschel Extragalac tic Legacy Project (HELP), divided into four sky patches: NGP, Herschel Stripe-82 and two halves of SGP field, covering in total $sim 660$ deg$^{2}$ of the sky. Contrary to previous studies exploiting only the common area between galaxy surveys and CMB lensing data, we improve the cross-correlation measurements using the full available area of the CMB lensing map. We estimate galaxy linear bias parameter, $b$, from joint analysis of cross-power spectrum and galaxy auto-power spectrum using Maximum Likelihood Estimation technique to obtain the value averaged over four fields as $b=2.06_{-0.02}^{+0.02}$, ranging from $1.94_{-0.03}^{+0.04}$ for SGP Part-2 to $3.03_{-0.09}^{+0.10}$ for NGP. We also estimate the amplitude of cross-correlation and find the averaged value to be $A=0.52_{-0.08}^{+0.08}$ spanning from $0.34_{-0.19}^{+0.19}$ for NGP to $0.67_{-0.20}^{+0.21}$ for SGP Part-1 respectively, significantly lower than expected value for the standard cosmological model. We perform several tests on systematic errors that can account for this discrepancy. We find that lower amplitude could be to some extent explained by the lower value of median redshift of the catalogue, however, we do not have any evidence that redshifts are systematically overestimated.
75 - Ye Cao , Yan Gong , Chang Feng 2019
The cosmic infrared background (CIB) anisotropies and cosmic microwave background (CMB) lensing are powerful measurements for exploring the cosmological and astrophysical problems. In this work, we measure the auto-correlation power spectrum of the C IB anisotropies in the Herschel-SPIRE HerMES Large Mode Survey (HeLMS) field, and the cross power spectrum with the CMB lensing measurements from the Planck satellite. The HeLMS field covers more than 270 deg^2, which is much larger than the previous analysis. We use the Herschel Level 1 time stream data to merge the CIB maps at 250, 350, and 500 um bands, and mask the areas where the flux is greater than 3-sigma (~50 mJy/beam) or no measured data. We obtain the final CIB power spectra at 100<ell<20000 by considering several effects, such as beam function, mode coupling, transfer function, and so on. We also calculate the theoretical CIB auto- and cross-power spectra of CIB and CMB lensing by assuming that the CIB emissivity follows Gaussian distribution in redshift. We find that, for the CIB auto power spectra, we obtain the signal to noise ratio (SNR) of 15.9, 15.7, and 15.3 at 250, 350, and 500 um, and for the CIBxCMB lensing power spectra, SNR of 7.5, 7.0, and 6.2 at 250, 350, and 500 um, respectively. Comparing to previous works, the constraints on the relevant CIB parameters are improved by factors of 2~5 in this study.
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%. This will enable use of sample variance cancellation techniques to determine cosmological parameters, and use of cross-correlation measurements to break parameter degeneracies. Assuming large sky overlap between CMB-S4 and LSST, we show that a joint analysis of CMB-S4 lensing and LSST clustering can yield very tight constraints on the matter amplitude $sigma_8(z)$, halo bias, and $f_mathrm{NL}$, competitive with the best stage IV experiment predictions, but using complementary methods, which may carry different and possibly lower systematics. Having no sky overlap between experiments degrades the precision of $sigma_8(z)$ by a factor of 20, and that of $f_mathrm{NL}$ by a factor of 1.5 to 2. Without CMB lensing, the precision always degrades by an order of magnitude or more, showing that a joint analysis is critical. Our results also suggest that CMB lensing in combination with LSS photometric surveys is a competitive probe of the evolution of structure in the redshift range $zsimeq 1-7$, probing a regime that is not well tested observationally. We explore predictions against other surveys and experiment configurations, finding that wide patches with maximal sky overlap between CMB and LSS surveys are most powerful for $sigma_8(z)$ and $f_mathrm{NL}$.
We present an improved and extended analysis of the cross-correlation between the map of the Cosmic Microwave Background (CMB) lensing potential derived from the emph{Planck} mission data and the high-redshift galaxies detected by the emph{Herschel} Astrophysical Terahertz Large Area Survey (H-ATLAS) in the photometric redshift range $z_{rm ph} ge 1.5$. We compare the results based on the 2013 and 2015 textit{Planck} datasets, and investigate the impact of different selections of the H-ATLAS galaxy samples. Significant improvements over our previous analysis have been achieved thanks to the higher signal-to-noise ratio of the new CMB lensing map recently released by the textit{Planck} collaboration. The effective galaxy bias parameter, $b$, for the full galaxy sample, derived from a joint analysis of the cross-power spectrum and of the galaxy auto-power spectrum is found to be $b = 3.54^{+0.15}_{-0.14}$. Furthermore, a first tomographic analysis of the cross-correlation signal is implemented, by splitting the galaxy sample into two redshift intervals: $1.5 le z_{rm ph} < 2.1$ and $z_{rm ph}ge 2.1$. A statistically significant signal was found for both bins, indicating a substantial increase with redshift of the bias parameter: $b=2.89pm0.23$ for the lower and $b=4.75^{+0.24}_{-0.25}$ for the higher redshift bin. Consistently with our previous analysis we find that the amplitude of the cross correlation signal is a factor of $1.45^{+0.14}_{-0.13}$ higher than expected from the standard $Lambda$CDM model for the assumed redshift distribution. The robustness of our results against possible systematic effects has been extensively discussed although the tension is mitigated by passing from 4 to 3$sigma$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا