ﻻ يوجد ملخص باللغة العربية
Motivated by connections to intersection homology of toric morphisms, the motivic monodromy conjecture, and a question of Stanley, we study the structure of triangulations of simplices whose local h-polynomial vanishes. As a first step, we identify a class of refinements that preserve the local h-polynomial. In dimensions 2 and 3, we show that all triangulations with vanishing local h-polynomial are obtained from one or two simple examples by a sequence of such refinements. In higher dimensions, we prove some partial results and give further examples.
We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary dimension $n$, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined us
A degree-regular triangulation is one in which each vertex has identical degree. Our main result is that any such triangulation of a (possibly non-compact) surface $S$ is geometric, that is, it is combinatorially equivalent to a geodesic triangulatio
We show that the number of partial triangulations of a set of $n$ points on the plane is at least the $(n-2)$-nd Catalan number. This is tight for convex $n$-gons. We also describe all the equality cases.
An empty simplex is a lattice simplex with only its vertices as lattice points. Their classification in dimension three was completed by White in 1964. In dimension four, the same task was started in 1988 by Mori, Morrison, and Morrison, with their m
We consider the problem of finding an inductive construction, based on vertex splitting, of triangulated spheres with a fixed number of additional edges (braces). We show that for any positive integer $b$ there is such an inductive construction of tr