ﻻ يوجد ملخص باللغة العربية
We consider the problem of finding an inductive construction, based on vertex splitting, of triangulated spheres with a fixed number of additional edges (braces). We show that for any positive integer $b$ there is such an inductive construction of triangulations with $b$ braces, having finitely many base graphs. In particular we establish a bound for the maximum size of a base graph with $b$ braces that is linear in $b$. In the case that $b=1$ or $2$ we determine the list of base graphs explicitly. Using these results we show that doubly braced triangulations are (generically) minimally rigid in two distinct geometric contexts arising from a hypercylinder in $mathbb{R}^4$ and a class of mixed norms on $mathbb{R}^3$.
We give a short proof of a result of Jordan and Tanigawa that a 4-connected graph which has a spanning planar triangulation as a proper subgraph is generically globally rigid in R^3. Our proof is based on a new sufficient condition for the so called
Let $ G $ be a connected graph. If $bar{sigma}(v)$ denotes the arithmetic mean of the distances from $v$ to all other vertices of $G$, then the proximity, $pi(G)$, of $G$ is defined as the smallest value of $bar{sigma}(v)$ over all vertices $v$ of $G
The KP hierarchy is a completely integrable system of quadratic, partial differential equations that generalizes the KdV hierarchy. A linear combination of Schur functions is a solution to the KP hierarchy if and only if its coefficients satisfy the
An $S$-hypersimplex for $S subseteq {0,1, dots,d}$ is the convex hull of all $0/1$-vectors of length $d$ with coordinate sum in $S$. These polytopes generalize the classical hypersimplices as well as cubes, crosspolytopes, and halfcubes. In this pape
A degree-regular triangulation is one in which each vertex has identical degree. Our main result is that any such triangulation of a (possibly non-compact) surface $S$ is geometric, that is, it is combinatorially equivalent to a geodesic triangulatio