ترغب بنشر مسار تعليمي؟ اضغط هنا

Riemannian simplices and triangulations

210   0   0.0 ( 0 )
 نشر من قبل Ramsay Dyer
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary dimension $n$, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the image of this barycentric coordinate map. In this work we articulate criteria that guarantee that the barycentric coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate. Quality measures for the thickness or fatness of Euclidean simplices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case. However, when the dimension is greater than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound that depends on the size of the simplex and local bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold.



قيم البحث

اقرأ أيضاً

We quantify conditions that ensure that a signed measure on a Riemannian manifold has a well defined centre of mass. We then use this result to quantify the extent of a neighbourhood on which the Riemannian barycentric coordinates of a set of $n+1$ p oints on an $n$-manifold provide a true coordinate chart, i.e., the barycentric coordinates provide a diffeomorphism between a neighbourhood of a Euclidean simplex, and a neighbourhood containing the points on the manifold.
Motivated by connections to intersection homology of toric morphisms, the motivic monodromy conjecture, and a question of Stanley, we study the structure of triangulations of simplices whose local h-polynomial vanishes. As a first step, we identify a class of refinements that preserve the local h-polynomial. In dimensions 2 and 3, we show that all triangulations with vanishing local h-polynomial are obtained from one or two simple examples by a sequence of such refinements. In higher dimensions, we prove some partial results and give further examples.
Delaunay has shown that the Delaunay complex of a finite set of points $P$ of Euclidean space $mathbb{R}^m$ triangulates the convex hull of $P$, provided that $P$ satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be de fined for arbitrary Riemannian manifolds. However, Delaunays genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on $P$ are required. A natural one is to assume that $P$ is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.
We present a constructive proof of Alexandrovs theorem regarding the existence of a convex polytope with a given metric on the boundary. The polytope is obtained as a result of a certain deformation in the class of generalized convex polytopes with t he given boundary. We study the space of generalized convex polytopes and discover a relation with the weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of a positively curved generalized convex polytope. The latter is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by generalizing the Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.
We generalize the notion of planar bicycle tracks -- a.k.a. one-trailer systems -- to so-called tractor/tractrix systems in general Riemannian manifolds and prove explicit expressions for the length of the ensuing tractrices and for the area of the d omains that are swept out by any given tractor/tractrix system. These expressions are sensitive to the curvatures of the ambient Riemannian manifold, and we prove explicit estimates for them based on Rauchs and Toponogovs comparison theorems. Moreover, the general length shortening property of tractor/tractrix systems is used to generate geodesics in homotopy classes of curves in the ambient manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا