ﻻ يوجد ملخص باللغة العربية
A degree-regular triangulation is one in which each vertex has identical degree. Our main result is that any such triangulation of a (possibly non-compact) surface $S$ is geometric, that is, it is combinatorially equivalent to a geodesic triangulation with respect to a constant curvature metric on $S$, and we list the possibilities. A key ingredient of the proof is to show that any two $d$-regular triangulations of the plane for $d> 6 $ are combinatorially equivalent. The proof of this uniqueness result, which is of independent interest, is based on an inductive argument involving some combinatorial topology.
We study $2k$-factors in $(2r+1)$-regular graphs. Hanson, Loten, and Toft proved that every $(2r+1)$-regular graph with at most $2r$ cut-edges has a $2$-factor. We generalize their result by proving for $kle(2r+1)/3$ that every $(2r+1)$-regular graph
A semi-regular tiling of the hyperbolic plane is a tessellation by regular geodesic polygons with the property that each vertex has the same vertex-type, which is a cyclic tuple of integers that determine the number of sides of the polygons surroundi
A two-dimensional simplicial complex is called $d$-{em regular} if every edge of it is contained in exactly $d$ distinct triangles. It is called $epsilon$-expanding if its up-down two-dimensional random walk has a normalized maximal eigenvalue which
We study optimal minimum degree conditions when an $n$-vertex graph $G$ contains an $r$-regular $r$-connected subgraph. We prove for $r$ fixed and $n$ large the condition to be $delta(G) ge frac{n+r-2}{2}$ when $nr equiv 0 pmod 2$. This answers a question of M.~Kriesell.