ﻻ يوجد ملخص باللغة العربية
Recent works show that ordering of the training data affects the model performance for Neural Machine Translation. Several approaches involving dynamic data ordering and data sharding based on curriculum learning have been analysed for the their performance gains and faster convergence. In this work we propose to empirically study several ordering approaches for the training data based on different metrics and evaluate their impact on the model performance. Results from our study show that pre-fixing the ordering of the training data based on perplexity scores from a pre-trained model performs the best and outperforms the default approach of randomly shuffling the training data every epoch.
Machine translation systems based on deep neural networks are expensive to train. Curriculum learning aims to address this issue by choosing the order in which samples are presented during training to help train better models faster. We adopt a proba
We introduce Data Diversification: a simple but effective strategy to boost neural machine translation (NMT) performance. It diversifies the training data by using the predictions of multiple forward and backward models and then merging them with the
We release a multilingual neural machine translation model, which can be used to translate text in the biomedical domain. The model can translate from 5 languages (French, German, Italian, Korean and Spanish) into English. It is trained with large am
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art result
Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The