ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multilingual Neural Machine Translation Model for Biomedical Data

151   0   0.0 ( 0 )
 نشر من قبل Vassilina Nikoulina
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We release a multilingual neural machine translation model, which can be used to translate text in the biomedical domain. The model can translate from 5 languages (French, German, Italian, Korean and Spanish) into English. It is trained with large amounts of generic and biomedical data, using domain tags. Our benchmarks show that it performs near state-of-the-art both on news (generic domain) and biomedical test sets, and that it outperforms the existing publicly released models. We believe that this release will help the large-scale multilingual analysis of the digital content of the COVID-19 crisis and of its effects on society, economy, and healthcare policies. We also release a test set of biomedical text for Korean-English. It consists of 758 sentences from official guidelines and recent papers, all about COVID-19.



قيم البحث

اقرأ أيضاً

Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The second direction employs monolingual data with self-supervision to pre-train translation models, followed by fine-tuning on small amounts of supervised data. In this work, we join these two lines of research and demonstrate the efficacy of monolingual data with self-supervision in multilingual NMT. We offer three major results: (i) Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models. (ii) Self-supervision improves zero-shot translation quality in multilingual models. (iii) Leveraging monolingual data with self-supervision provides a viable path towards adding new languages to multilingual models, getting up to 33 BLEU on ro-en translation without any parallel data or back-translation.
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
183 - Xu Tan , Jiale Chen , Di He 2019
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low- resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag es being used. We perform extensive experiments in training massively multilingual NMT models, translating up to 102 languages to and from English within a single model. We explore different setups for training such models and analyze the trade-offs between translation quality and various modeling decisions. We report results on the publicly available TED talks multilingual corpus where we show that massively multilingual many-to-many models are effective in low resource settings, outperforming the previous state-of-the-art while supporting up to 59 languages. Our experiments on a large-scale dataset with 102 languages to and from English and up to one million examples per direction also show promising results, surpassing strong bilingual baselines and encouraging future work on massively multilingual NMT.
110 - Xu Tan , Yichong Leng , Jiale Chen 2019
Multilingual neural machine translation (NMT) has recently been investigated from different aspects (e.g., pivot translation, zero-shot translation, fine-tuning, or training from scratch) and in different settings (e.g., rich resource and low resourc e, one-to-many, and many-to-one translation). This paper concentrates on a deep understanding of multilingual NMT and conducts a comprehensive study on a multilingual dataset with more than 20 languages. Our results show that (1) low-resource language pairs benefit much from multilingual training, while rich-resource language pairs may get hurt under limited model capacity and training with similar languages benefits more than dissimilar languages; (2) fine-tuning performs better than training from scratch in the one-to-many setting while training from scratch performs better in the many-to-one setting; (3) the bottom layers of the encoder and top layers of the decoder capture more language-specific information, and just fine-tuning these parts can achieve good accuracy for low-resource language pairs; (4) direct translation is better than pivot translation when the source language is similar to the target language (e.g., in the same language branch), even when the size of direct training data is much smaller; (5) given a fixed training data budget, it is better to introduce more languages into multilingual training for zero-shot translation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا