ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Self-Attention Network for Medical Concept Embedding

69   0   0.0 ( 0 )
 نشر من قبل Xueping Peng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In longitudinal electronic health records (EHRs), the event records of a patient are distributed over a long period of time and the temporal relations between the events reflect sufficient domain knowledge to benefit prediction tasks such as the rate of inpatient mortality. Medical concept embedding as a feature extraction method that transforms a set of medical concepts with a specific time stamp into a vector, which will be fed into a supervised learning algorithm. The quality of the embedding significantly determines the learning performance over the medical data. In this paper, we propose a medical concept embedding method based on applying a self-attention mechanism to represent each medical concept. We propose a novel attention mechanism which captures the contextual information and temporal relationships between medical concepts. A light-weight neural net, Temporal Self-Attention Network (TeSAN), is then proposed to learn medical concept embedding based solely on the proposed attention mechanism. To test the effectiveness of our proposed methods, we have conducted clustering and prediction tasks on two public EHRs datasets comparing TeSAN against five state-of-the-art embedding methods. The experimental results demonstrate that the proposed TeSAN model is superior to all the compared methods. To the best of our knowledge, this work is the first to exploit temporal self-attentive relations between medical events.



قيم البحث

اقرأ أيضاً

Constituting highly informative network embeddings is an important tool for network analysis. It encodes network topology, along with other useful side information, into low-dimensional node-based feature representations that can be exploited by stat istical modeling. This work focuses on learning context-aware network embeddings augmented with text data. We reformulate the network-embedding problem, and present two novel strategies to improve over traditional attention mechanisms: ($i$) a content-aware sparse attention module based on optimal transport, and ($ii$) a high-level attention parsing module. Our approach yields naturally sparse and self-normalized relational inference. It can capture long-term interactions between sequences, thus addressing the challenges faced by existing textual network embedding schemes. Extensive experiments are conducted to demonstrate our model can consistently outperform alternative state-of-the-art methods.
Flow prediction (e.g., crowd flow, traffic flow) with features of spatial-temporal is increasingly investigated in AI research field. It is very challenging due to the complicated spatial dependencies between different locations and dynamic temporal dependencies among different time intervals. Although measurements of both dependencies are employed, existing methods suffer from the following two problems. First, the temporal dependencies are measured either uniformly or bias against long-term dependencies, which overlooks the distinctive impacts of short-term and long-term temporal dependencies. Second, the existing methods capture spatial and temporal dependencies independently, which wrongly assumes that the correlations between these dependencies are weak and ignores the complicated mutual influences between them. To address these issues, we propose a Spatial-Temporal Self-Attention Network (ST-SAN). As the path-length of attending long-term dependency is shorter in the self-attention mechanism, the vanishing of long-term temporal dependencies is prevented. In addition, since our model relies solely on attention mechanisms, the spatial and temporal dependencies can be simultaneously measured. Experimental results on real-world data demonstrate that, in comparison with state-of-the-art methods, our model reduces the root mean square errors by 9% in inflow prediction and 4% in outflow prediction on Taxi-NYC data, which is very significant compared to the previous improvement.
167 - Kaitao Song , Xu Tan , Furong Peng 2018
The encoder-decoder is the typical framework for Neural Machine Translation (NMT), and different structures have been developed for improving the translation performance. Transformer is one of the most promising structures, which can leverage the sel f-attention mechanism to capture the semantic dependency from global view. However, it cannot distinguish the relative position of different tokens very well, such as the tokens located at the left or right of the current token, and cannot focus on the local information around the current token either. To alleviate these problems, we propose a novel attention mechanism named Hybrid Self-Attention Network (HySAN) which accommodates some specific-designed masks for self-attention network to extract various semantic, such as the global/local information, the left/right part context. Finally, a squeeze gate is introduced to combine different kinds of SANs for fusion. Experimental results on three machine translation tasks show that our proposed framework outperforms the Transformer baseline significantly and achieves superior results over state-of-the-art NMT systems.
Signed network embedding is an approach to learn low-dimensional representations of nodes in signed networks with both positive and negative links, which facilitates downstream tasks such as link prediction with general data mining frameworks. Due to the distinct properties and significant added value of negative links, existing signed network embedding methods usually design dedicated methods based on social theories such as balance theory and status theory. However, existing signed network embedding methods ignore the characteristics of multiple facets of each node and mix them up in one single representation, which limits the ability to capture the fine-grained attentions between node pairs. In this paper, we propose MUSE, a MUlti-faceted attention-based Signed network Embedding framework to tackle this problem. Specifically, a joint intra- and inter-facet attention mechanism is introduced to aggregate fine-grained information from neighbor nodes. Moreover, balance theory is also utilized to guide information aggregation from multi-order balanced and unbalanced neighbors. Experimental results on four real-world signed network datasets demonstrate the effectiveness of our proposed framework.
3D convolutional neural networks have achieved promising results for video tasks in computer vision, including video saliency prediction that is explored in this paper. However, 3D convolution encodes visual representation merely on fixed local space time according to its kernel size, while human attention is always attracted by relational visual features at different time of a video. To overcome this limitation, we propose a novel Spatio-Temporal Self-Attention 3D Network (STSANet) for video saliency prediction, in which multiple Spatio-Temporal Self-Attention (STSA) modules are employed at different levels of 3D convolutional backbone to directly capture long-range relations between spatio-temporal features of different time steps. Besides, we propose an Attentional Multi-Scale Fusion (AMSF) module to integrate multi-level features with the perception of context in semantic and spatio-temporal subspaces. Extensive experiments demonstrate the contributions of key components of our method, and the results on DHF1K, Hollywood-2, UCF, and DIEM benchmark datasets clearly prove the superiority of the proposed model compared with all state-of-the-art models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا