ﻻ يوجد ملخص باللغة العربية
The encoder-decoder is the typical framework for Neural Machine Translation (NMT), and different structures have been developed for improving the translation performance. Transformer is one of the most promising structures, which can leverage the self-attention mechanism to capture the semantic dependency from global view. However, it cannot distinguish the relative position of different tokens very well, such as the tokens located at the left or right of the current token, and cannot focus on the local information around the current token either. To alleviate these problems, we propose a novel attention mechanism named Hybrid Self-Attention Network (HySAN) which accommodates some specific-designed masks for self-attention network to extract various semantic, such as the global/local information, the left/right part context. Finally, a squeeze gate is introduced to combine different kinds of SANs for fusion. Experimental results on three machine translation tasks show that our proposed framework outperforms the Transformer baseline significantly and achieves superior results over state-of-the-art NMT systems.
Multi-modal machine translation (MMT) improves translation quality by introducing visual information. However, the existing MMT model ignores the problem that the image will bring information irrelevant to the text, causing much noise to the model an
Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sent
We explore the suitability of self-attention models for character-level neural machine translation. We test the standard transformer model, as well as a novel variant in which the encoder block combines information from nearby characters using convol
In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a
This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with input noise for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT