ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Textual Network Embedding with Global Attention via Optimal Transport

82   0   0.0 ( 0 )
 نشر من قبل Liqun Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Constituting highly informative network embeddings is an important tool for network analysis. It encodes network topology, along with other useful side information, into low-dimensional node-based feature representations that can be exploited by statistical modeling. This work focuses on learning context-aware network embeddings augmented with text data. We reformulate the network-embedding problem, and present two novel strategies to improve over traditional attention mechanisms: ($i$) a content-aware sparse attention module based on optimal transport, and ($ii$) a high-level attention parsing module. Our approach yields naturally sparse and self-normalized relational inference. It can capture long-term interactions between sequences, thus addressing the challenges faced by existing textual network embedding schemes. Extensive experiments are conducted to demonstrate our model can consistently outperform alternative state-of-the-art methods.



قيم البحث

اقرأ أيضاً

In longitudinal electronic health records (EHRs), the event records of a patient are distributed over a long period of time and the temporal relations between the events reflect sufficient domain knowledge to benefit prediction tasks such as the rate of inpatient mortality. Medical concept embedding as a feature extraction method that transforms a set of medical concepts with a specific time stamp into a vector, which will be fed into a supervised learning algorithm. The quality of the embedding significantly determines the learning performance over the medical data. In this paper, we propose a medical concept embedding method based on applying a self-attention mechanism to represent each medical concept. We propose a novel attention mechanism which captures the contextual information and temporal relationships between medical concepts. A light-weight neural net, Temporal Self-Attention Network (TeSAN), is then proposed to learn medical concept embedding based solely on the proposed attention mechanism. To test the effectiveness of our proposed methods, we have conducted clustering and prediction tasks on two public EHRs datasets comparing TeSAN against five state-of-the-art embedding methods. The experimental results demonstrate that the proposed TeSAN model is superior to all the compared methods. To the best of our knowledge, this work is the first to exploit temporal self-attentive relations between medical events.
One of the most popular paradigms of applying large, pre-trained NLP models such as BERT is to fine-tune it on a smaller dataset. However, one challenge remains as the fine-tuned model often overfits on smaller datasets. A symptom of this phenomenon is that irrelevant words in the sentences, even when they are obvious to humans, can substantially degrade the performance of these fine-tuned BERT models. In this paper, we propose a novel technique, called Self-Supervised Attention (SSA) to help facilitate this generalization challenge. Specifically, SSA automatically generates weak, token-level attention labels iteratively by probing the fine-tuned model from the previous iteration. We investigate two different ways of integrating SSA into BERT and propose a hybrid approach to combine their benefits. Empirically, on a variety of public datasets, we illustrate significant performance improvement using our SSA-enhanced BERT model.
Text encoders based on C-DSSM or transformers have demonstrated strong performance in many Natural Language Processing (NLP) tasks. Low latency variants of these models have also been developed in recent years in order to apply them in the field of s ponsored search which has strict computational constraints. However these models are not the panacea to solve all the Natural Language Understanding (NLU) challenges as the pure semantic information in the data is not sufficient to fully identify the user intents. We propose the TextGNN model that naturally extends the strong twin tower structured encoders with the complementary graph information from user historical behaviors, which serves as a natural guide to help us better understand the intents and hence generate better language representations. The model inherits all the benefits of twin tower models such as C-DSSM and TwinBERT so that it can still be used in the low latency environment while achieving a significant performance gain than the strong encoder-only counterpart baseline models in both offline evaluations and online production system. In offline experiments, the model achieves a 0.14% overall increase in ROC-AUC with a 1% increased accuracy for long-tail low-frequency Ads, and in the online A/B testing, the model shows a 2.03% increase in Revenue Per Mille with a 2.32% decrease in Ad defect rate.
Neural machine translation (NMT) is notoriously sensitive to noises, but noises are almost inevitable in practice. One special kind of noise is the homophone noise, where words are replaced by other words with similar pronunciations. We propose to im prove the robustness of NMT to homophone noises by 1) jointly embedding both textual and phonetic information of source sentences, and 2) augmenting the training dataset with homophone noises. Interestingly, to achieve better translation quality and more robustness, we found that most (though not all) weights should be put on the phonetic rather than textual information. Experiments show that our method not only significantly improves the robustness of NMT to homophone noises, but also surprisingly improves the translation quality on some clean test sets.
162 - Chengbin Hou , Han Zhang , Shan He 2020
Learning low-dimensional topological representation of a network in dynamic environments is attracting much attention due to the time-evolving nature of many real-world networks. The main and common objective of Dynamic Network Embedding (DNE) is to efficiently update node embeddings while preserving network topology at each time step. The idea of most existing DNE methods is to capture the topological changes at or around the most affected nodes (instead of all nodes) and accordingly update node embeddings. Unfortunately, this kind of approximation, although can improve efficiency, cannot effectively preserve the global topology of a dynamic network at each time step, due to not considering the inactive sub-networks that receive accumulated topological changes propagated via the high-order proximity. To tackle this challenge, we propose a novel node selecting strategy to diversely select the representative nodes over a network, which is coordinated with a new incremental learning paradigm of Skip-Gram based embedding approach. The extensive experiments show GloDyNE, with a small fraction of nodes being selected, can already achieve the superior or comparable performance w.r.t. the state-of-the-art DNE methods in three typical downstream tasks. Particularly, GloDyNE significantly outperforms other methods in the graph reconstruction task, which demonstrates its ability of global topology preservation. The source code is available at https://github.com/houchengbin/GloDyNE

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا