ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential algebra of cubic planar graphs

66   0   0.0 ( 0 )
 نشر من قبل Roger Casals
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we associate a combinatorial differential graded algebra to a cubic planar graph G. This algebra is defined combinatorially by counting binary sequences, which we introduce, and several explicit computations are provided. In addition, in the appendix by K. Sackel the F(q)-rational points of its graded augmentation variety are shown to coincide with (q+1)-colorings of the dual graph.



قيم البحث

اقرأ أيضاً

We provide precise asymptotic estimates for the number of several classes of labelled cubic planar graphs, and we analyze properties of such random graphs under the uniform distribution. This model was first analyzed by Bodirsky et al. (Random Struct ures Algorithms 2007). We revisit their work and obtain new results on the enumeration of cubic planar graphs and on random cubic planar graphs. In particular, we determine the exact probability of a random cubic planar graph being connected, and we show that the distribution of the number of triangles in random cubic planar graphs is asymptotically normal with linear expectation and variance. To the best of our knowledge, this is the first time one is able to determine the asymptotic distribution for the number of copies of a fixed graph containing a cycle in classes of random planar graphs arising from planar maps.
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seym our (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $cgamma^n$, where $c>0$ and $gamma sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou ps $G=la a,b| a^2=1, b^s=1, (ab)^3=1, etc. ra$ generated by an involution $a$ and an element $b$ of order $sgeq3$ such that their product $ab$ has order 3. More precisely, it is shown that the Cayley graph $X=Cay(G,{a,b,b^{-1}})$ has a Hamilton cycle when $|G|$ (and thus $s$) is congruent to 2 modulo 4, and has a long cycle missing only two vertices (and thus necessarily a Hamilton path) when $|G|$ is congruent to 0 modulo 4.
An equitable $k$-partition of a graph $G$ is a collection of induced subgraphs $(G[V_1],G[V_2],ldots,G[V_k])$ of $G$ such that $(V_1,V_2,ldots,V_k)$ is a partition of $V(G)$ and $-1le |V_i|-|V_j|le 1$ for all $1le i<jle k$. We prove that every planar graph admits an equitable $2$-partition into $3$-degenerate graphs, an equitable $3$-partition into $2$-degenerate graphs, and an equitable $3$-partition into two forests and one graph.
In this paper, we study the achromatic and the pseudoachromatic numbers of planar and outerplanar graphs as well as planar graphs of girth 4 and graphs embedded on a surface. We give asymptotically tight results and lower bounds for maximal embedded graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا