ﻻ يوجد ملخص باللغة العربية
An (r,alpha)-bounded excess flow ((r,alpha)-flow) in an orientation of a graph G=(V,E) is an assignment of a real flow value between 1 and r-1 to every edge. Rather than 0 as in an actual flow, some flow excess, which does not exceed alpha may accumulate in any vertex. Bounded excess flows suggest a generalization of Circular nowhere zero flows, which can be regarded as (r,0)-flows. We define (r,alpha) as Stronger or equivalent to (s,beta) If the existence of an (r,alpha)-flow in a cubic graph always implies the existence of an (s,beta)-flow in the same graph. Then we study the structure of the two-dimensional flow strength poset. A major role is played by the Trace parameter: tr(r,alpha)=(r-2alpha) divided by (1-alpha). Among points with the same trace the stronger is the one with the larger r (an r-cnzf is of trace r). About one half of the article is devoted to proving the main result: Every cubic graph admits a (3.5,0.5)-flow. tr(3.5,0.5)=5 so it can be considered a step in the direction of the 5-flow Conjecture. Our result is best possible for all cubic graphs while the seemingly stronger 5-flow Conjecture only applies to bridgeless graphs. We strongly rely on the notion of k-weak bisections, defined and studied in: L. Esperet, G. Mazzuoccolo and M. Tarsi Flows and Bisections in Cubic Graphs J. Graph Theory, 86(2) (2017), 149-158.
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou
A graph is apex if there is a vertex whose deletion makes the graph planar, and doublecross if it can be drawn in the plane with only two crossings, both incident with the infinite region in the natural sense. In 1966, Tutte conjectured that every tw
In this article we associate a combinatorial differential graded algebra to a cubic planar graph G. This algebra is defined combinatorially by counting binary sequences, which we introduce, and several explicit computations are provided. In addition,
We consider spherical quadrangulations, i.e., graph embeddings in the sphere, in which every face has boundary walk of length 4, and all vertices have degree 3 or 4. Interpreting each degree 4 vertex as a crossing, these embeddings can also be though
We provide precise asymptotic estimates for the number of several classes of labelled cubic planar graphs, and we analyze properties of such random graphs under the uniform distribution. This model was first analyzed by Bodirsky et al. (Random Struct