ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy-Preserving Bandits

93   0   0.0 ( 0 )
 نشر من قبل Mohammad Malekzadeh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Contextual bandit algorithms~(CBAs) often rely on personal data to provide recommendations. Centralized CBA agents utilize potentially sensitive data from recent interactions to provide personalization to end-users. Keeping the sensitive data locally, by running a local agent on the users device, protects the users privacy, however, the agent requires longer to produce useful recommendations, as it does not leverage feedback from other users. This paper proposes a technique we call Privacy-Preserving Bandits (P2B); a system that updates local agents by collecting feedback from other local agents in a differentially-private manner. Comparisons of our proposed approach with a non-private, as well as a fully-private (local) system, show competitive performance on both synthetic benchmarks and real-world data. Specifically, we observed only a decrease of 2.6% and 3.6% in multi-label classification accuracy, and a CTR increase of 0.0025 in online advertising for a privacy budget $epsilon approx 0.693$. These results suggest P2B is an effective approach to challenges arising in on-device privacy-preserving personalization.



قيم البحث

اقرأ أيضاً

Contextual bandits are online learners that, given an input, select an arm and receive a reward for that arm. They use the reward as a learning signal and aim to maximize the total reward over the inputs. Contextual bandits are commonly used to solve recommendation or ranking problems. This paper considers a learning setting in which multiple parties aim to train a contextual bandit together in a private way: the parties aim to maximize the total reward but do not want to share any of the relevant information they possess with the other parties. Specifically, multiple parties have access to (different) features that may benefit the learner but that cannot be shared with other parties. One of the parties pulls the arm but other parties may not learn which arm was pulled. One party receives the reward but the other parties may not learn the reward value. This paper develops a privacy-preserving multi-party contextual bandit for this learning setting by combining secure multi-party computation with a differentially private mechanism based on epsilon-greedy exploration.
We consider a resource allocation problem involving a large number of agents with individual constraints subject to privacy, and a central operator whose objective is to optimize a global, possibly nonconvex, cost while satisfying the agents constrai nts, for instance an energy operator in charge of the management of energy consumption flexibilities of many individual consumers. We provide a privacy-preserving algorithm that does compute the optimal allocation of resources, avoiding each agent to reveal her private information (constraints and individual solution profile) neither to the central operator nor to a third party. Our method relies on an aggregation procedure: we compute iteratively a global allocation of resources, and gradually ensure existence of a disaggregation, that is individual profiles satisfying agents private constraints, by a protocol involving the generation of polyhedral cuts and secure multiparty computations (SMC). To obtain these cuts, we use an alternate projection method, which is implemented locally by each agent, preserving her privacy needs. We adress especially the case in which the local and global constraints define a transportation polytope. Then, we provide theoretical convergence estimates together with numerical results, showing that the algorithm can be effectively used to solve the allocation problem in high dimension, while addressing privacy issues.
In this paper, we study the problem of deceptive reinforcement learning to preserve the privacy of a reward function. Reinforcement learning is the problem of finding a behaviour policy based on rewards received from exploratory behaviour. A key ingr edient in reinforcement learning is a reward function, which determines how much reward (negative or positive) is given and when. However, in some situations, we may want to keep a reward function private; that is, to make it difficult for an observer to determine the reward function used. We define the problem of privacy-preserving reinforcement learning, and present two models for solving it. These models are based on dissimulation -- a form of deception that `hides the truth. We evaluate our models both computationally and via human behavioural experiments. Results show that the resulting policies are indeed deceptive, and that participants can determine the true reward function less reliably than that of an honest agent.
This paper attempts to answer the question whether neural network pruning can be used as a tool to achieve differential privacy without losing much data utility. As a first step towards understanding the relationship between neural network pruning an d differential privacy, this paper proves that pruning a given layer of the neural network is equivalent to adding a certain amount of differentially private noise to its hidden-layer activations. The paper also presents experimental results to show the practical implications of the theoretical finding and the key parameter values in a simple practical setting. These results show that neural network pruning can be a more effective alternative to adding differentially private noise for neural networks.
Deep Neural Network (DNN) has been showing great potential in kinds of real-world applications such as fraud detection and distress prediction. Meanwhile, data isolation has become a serious problem currently, i.e., different parties cannot share dat a with each other. To solve this issue, most research leverages cryptographic techniques to train secure DNN models for multi-parties without compromising their private data. Although such methods have strong security guarantee, they are difficult to scale to deep networks and large datasets due to its high communication and computation complexities. To solve the scalability of the existing secure Deep Neural Network (DNN) in data isolation scenarios, in this paper, we propose an industrial scale privacy preserving neural network learning paradigm, which is secure against semi-honest adversaries. Our main idea is to split the computation graph of DNN into two parts, i.e., the computations related to private data are performed by each party using cryptographic techniques, and the rest computations are done by a neutral server with high computation ability. We also present a defender mechanism for further privacy protection. We conduct experiments on real-world fraud detection dataset and financial distress prediction dataset, the encouraging results demonstrate the practicalness of our proposal.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا