ترغب بنشر مسار تعليمي؟ اضغط هنا

Deceptive Reinforcement Learning for Privacy-Preserving Planning

124   0   0.0 ( 0 )
 نشر من قبل Tim Miller
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the problem of deceptive reinforcement learning to preserve the privacy of a reward function. Reinforcement learning is the problem of finding a behaviour policy based on rewards received from exploratory behaviour. A key ingredient in reinforcement learning is a reward function, which determines how much reward (negative or positive) is given and when. However, in some situations, we may want to keep a reward function private; that is, to make it difficult for an observer to determine the reward function used. We define the problem of privacy-preserving reinforcement learning, and present two models for solving it. These models are based on dissimulation -- a form of deception that `hides the truth. We evaluate our models both computationally and via human behavioural experiments. Results show that the resulting policies are indeed deceptive, and that participants can determine the true reward function less reliably than that of an honest agent.

قيم البحث

اقرأ أيضاً

Contextual bandit algorithms~(CBAs) often rely on personal data to provide recommendations. Centralized CBA agents utilize potentially sensitive data from recent interactions to provide personalization to end-users. Keeping the sensitive data locally , by running a local agent on the users device, protects the users privacy, however, the agent requires longer to produce useful recommendations, as it does not leverage feedback from other users. This paper proposes a technique we call Privacy-Preserving Bandits (P2B); a system that updates local agents by collecting feedback from other local agents in a differentially-private manner. Comparisons of our proposed approach with a non-private, as well as a fully-private (local) system, show competitive performance on both synthetic benchmarks and real-world data. Specifically, we observed only a decrease of 2.6% and 3.6% in multi-label classification accuracy, and a CTR increase of 0.0025 in online advertising for a privacy budget $epsilon approx 0.693$. These results suggest P2B is an effective approach to challenges arising in on-device privacy-preserving personalization.
139 - Sheng Li , Yutai Zhou , Ross Allen 2021
Communication is a important factor that enables agents work cooperatively in multi-agent reinforcement learning (MARL). Most previous work uses continuous message communication whose high representational capacity comes at the expense of interpretab ility. Allowing agents to learn their own discrete message communication protocol emerged from a variety of domains can increase the interpretability for human designers and other agents.This paper proposes a method to generate discrete messages analogous to human languages, and achieve communication by a broadcast-and-listen mechanism based on self-attention. We show that discrete message communication has performance comparable to continuous message communication but with much a much smaller vocabulary size.Furthermore, we propose an approach that allows humans to interactively send discrete messages to agents.
Machine learning (ML) is increasingly being adopted in a wide variety of application domains. Usually, a well-performing ML model, especially, emerging deep neural network model, relies on a large volume of training data and high-powered computationa l resources. The need for a vast volume of available data raises serious privacy concerns because of the risk of leakage of highly privacy-sensitive information and the evolving regulatory environments that increasingly restrict access to and use of privacy-sensitive data. Furthermore, a trained ML model may also be vulnerable to adversarial attacks such as membership/property inference attacks and model inversion attacks. Hence, well-designed privacy-preserving ML (PPML) solutions are crucial and have attracted increasing research interest from academia and industry. More and more efforts of PPML are proposed via integrating privacy-preserving techniques into ML algorithms, fusing privacy-preserving approaches into ML pipeline, or designing various privacy-preserving architectures for existing ML systems. In particular, existing PPML arts cross-cut ML, system, security, and privacy; hence, there is a critical need to understand state-of-art studies, related challenges, and a roadmap for future research. This paper systematically reviews and summarizes existing privacy-preserving approaches and proposes a PGU model to guide evaluation for various PPML solutions through elaborately decomposing their privacy-preserving functionalities. The PGU model is designed as the triad of Phase, Guarantee, and technical Utility. Furthermore, we also discuss the unique characteristics and challenges of PPML and outline possible directions of future work that benefit a wide range of research communities among ML, distributed systems, security, and privacy areas.
Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is oft en difficult due to its sparsity. Furthermore, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks.
154 - Shariq Iqbal , Fei Sha 2018
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in single-agent settings. We present an actor-critic algorithm that trains decentralized policies in multi-agent settin gs, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multi-agent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا