ﻻ يوجد ملخص باللغة العربية
Contextual bandits are online learners that, given an input, select an arm and receive a reward for that arm. They use the reward as a learning signal and aim to maximize the total reward over the inputs. Contextual bandits are commonly used to solve recommendation or ranking problems. This paper considers a learning setting in which multiple parties aim to train a contextual bandit together in a private way: the parties aim to maximize the total reward but do not want to share any of the relevant information they possess with the other parties. Specifically, multiple parties have access to (different) features that may benefit the learner but that cannot be shared with other parties. One of the parties pulls the arm but other parties may not learn which arm was pulled. One party receives the reward but the other parties may not learn the reward value. This paper develops a privacy-preserving multi-party contextual bandit for this learning setting by combining secure multi-party computation with a differentially private mechanism based on epsilon-greedy exploration.
Contextual bandit algorithms~(CBAs) often rely on personal data to provide recommendations. Centralized CBA agents utilize potentially sensitive data from recent interactions to provide personalization to end-users. Keeping the sensitive data locally
As the analytic tools become more powerful, and more data are generated on a daily basis, the issue of data privacy arises. This leads to the study of the design of privacy-preserving machine learning algorithms. Given two objectives, namely, utility
This paper attempts to answer the question whether neural network pruning can be used as a tool to achieve differential privacy without losing much data utility. As a first step towards understanding the relationship between neural network pruning an
Deep Neural Network (DNN) has been showing great potential in kinds of real-world applications such as fraud detection and distress prediction. Meanwhile, data isolation has become a serious problem currently, i.e., different parties cannot share dat
An increasing number of businesses are replacing their data storage and computation infrastructure with cloud services. Likewise, there is an increased emphasis on performing analytics based on multiple datasets obtained from different data sources.