ﻻ يوجد ملخص باللغة العربية
We make a first geometric study of three varieties in $mathbb{C}^m otimes mathbb{C}^m otimes mathbb{C}^m$ (for each $m$), including the Zariski closure of the set of tight tensors, the tensors with continuous regular symmetry. Our motivation is to develop a geometric framework for Strassens Asymptotic Rank Conjecture that the asymptotic rank of any tight tensor is minimal. In particular, we determine the dimension of the set of tight tensors. We prove that this dimension equals the dimension of the set of oblique tensors, a less restrictive class introduced by Strassen.
We investigate an extension of a lower bound on the Waring (cactus) rank of homogeneous forms due to Ranestad and Schreyer. We show that for particular classes of homogeneous forms, for which a generalization of this method applies, the lower bound e
A classical set of birational invariants of a variety are its spaces of pluricanonical forms and some of their canonically defined subspaces. Each of these vector spaces admits a typical metric structure which is also birationally invariant. These ve
In 1969, Strassen shocked the world by showing that two n x n matrices could be multiplied in time asymptotically less than $O(n^3)$. While the recursive construction in his algorithm is very clear, the key gain was made by showing that 2 x 2 matrix
Structural and computational understanding of tensors is the driving force behind faster matrix multiplication algorithms, the unraveling of quantum entanglement, and the breakthrough on the cap set problem. Strassens asymptotic spectra program (SFCS
We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on $n$ input bits, each of which has approximate Fourier sparsity at most $O(n^3)$