ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Architecture Search for Joint Optimization of Predictive Power and Biological Knowledge

267   0   0.0 ( 0 )
 نشر من قبل Zijun Zhang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a neural architecture search framework, BioNAS, that is tailored for biomedical researchers to easily build, evaluate, and uncover novel knowledge from interpretable deep learning models. The introduction of knowledge dissimilarity functions in BioNAS enables the joint optimization of predictive power and biological knowledge through searching architectures in a model space. By optimizing the consistency with existing knowledge, we demonstrate that BioNAS optimal models reveal novel knowledge in both simulated data and in real data of functional genomics. BioNAS provides a useful tool for domain experts to inject their prior belief into automated machine learning and therefore making deep learning easily accessible to practitioners. BioNAS is available at https://github.com/zj-zhang/BioNAS-pub.

قيم البحث

اقرأ أيضاً

In neural architecture search (NAS), the space of neural network architectures is automatically explored to maximize predictive accuracy for a given task. Despite the success of recent approaches, most existing methods cannot be directly applied to l arge scale problems because of their prohibitive computational complexity or high memory usage. In this work, we propose a Probabilistic approach to neural ARchitecture SEarCh (PARSEC) that drastically reduces memory requirements while maintaining state-of-the-art computational complexity, making it possible to directly search over more complex architectures and larger datasets. Our approach only requires as much memory as is needed to train a single architecture from our search space. This is due to a memory-efficient sampling procedure wherein we learn a probability distribution over high-performing neural network architectures. Importantly, this framework enables us to transfer the distribution of architectures learnt on smaller problems to larger ones, further reducing the computational cost. We showcase the advantages of our approach in applications to CIFAR-10 and ImageNet, where our approach outperforms methods with double its computational cost and matches the performance of methods with costs that are three orders of magnitude larger.
We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global max imum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance.
The widespread of Coronavirus has led to a worldwide pandemic with a high mortality rate. Currently, the knowledge accumulated from different studies about this virus is very limited. Leveraging a wide-range of biological knowledge, such as gene onto logy and protein-protein interaction (PPI) networks from other closely related species presents a vital approach to infer the molecular impact of a new species. In this paper, we propose the transferred multi-relational embedding model Bio-JOIE to capture the knowledge of gene ontology and PPI networks, which demonstrates superb capability in modeling the SARS-CoV-2-human protein interactions. Bio-JOIE jointly trains two model components. The knowledge model encodes the relational facts from the protein and GO domains into separated embedding spaces, using a hierarchy-aware encoding technique employed for the GO terms. On top of that, the transfer model learns a non-linear transformation to transfer the knowledge of PPIs and gene ontology annotations across their embedding spaces. By leveraging only structured knowledge, Bio-JOIE significantly outperforms existing state-of-the-art methods in PPI type prediction on multiple species. Furthermore, we also demonstrate the potential of leveraging the learned representations on clustering proteins with enzymatic function into enzyme commission families. Finally, we show that Bio-JOIE can accurately identify PPIs between the SARS-CoV-2 proteins and human proteins, providing valuable insights for advancing research on this new disease.
Neural architecture search (NAS) and hyperparameter optimization (HPO) make deep learning accessible to non-experts by automatically finding the architecture of the deep neural network to use and tuning the hyperparameters of the used training pipeli ne. While both NAS and HPO have been studied extensively in recent years, NAS methods typically assume fixed hyperparameters and vice versa - there exists little work on joint NAS + HPO. Furthermore, NAS has recently often been framed as a multi-objective optimization problem, in order to take, e.g., resource requirements into account. In this paper, we propose a set of methods that extend current approaches to jointly optimize neural architectures and hyperparameters with respect to multiple objectives. We hope that these methods will serve as simple baselines for future research on multi-objective joint NAS + HPO. To facilitate this, all our code is available at https://github.com/automl/multi-obj-baselines.
Neural Architecture Search (NAS), aiming at automatically designing network architectures by machines, is hoped and expected to bring about a new revolution in machine learning. Despite these high expectation, the effectiveness and efficiency of exis ting NAS solutions are unclear, with some recent works going so far as to suggest that many existing NAS solutions are no better than random architecture selection. The inefficiency of NAS solutions may be attributed to inaccurate architecture evaluation. Specifically, to speed up NAS, recent works have proposed under-training different candidate architectures in a large search space concurrently by using shared network parameters; however, this has resulted in incorrect architecture ratings and furthered the ineffectiveness of NAS. In this work, we propose to modularize the large search space of NAS into blocks to ensure that the potential candidate architectures are fully trained; this reduces the representation shift caused by the shared parameters and leads to the correct rating of the candidates. Thanks to the block-wise search, we can also evaluate all of the candidate architectures within a block. Moreover, we find that the knowledge of a network model lies not only in the network parameters but also in the network architecture. Therefore, we propose to distill the neural architecture (DNA) knowledge from a teacher model as the supervision to guide our block-wise architecture search, which significantly improves the effectiveness of NAS. Remarkably, the capacity of our searched architecture has exceeded the teacher model, demonstrating the practicability and scalability of our method. Finally, our method achieves a state-of-the-art 78.4% top-1 accuracy on ImageNet in a mobile setting, which is about a 2.1% gain over EfficientNet-B0. All of our searched models along with the evaluation code are available online.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا