ترغب بنشر مسار تعليمي؟ اضغط هنا

Bio-JOIE: Joint Representation Learning of Biological Knowledge Bases

115   0   0.0 ( 0 )
 نشر من قبل Muhao Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The widespread of Coronavirus has led to a worldwide pandemic with a high mortality rate. Currently, the knowledge accumulated from different studies about this virus is very limited. Leveraging a wide-range of biological knowledge, such as gene ontology and protein-protein interaction (PPI) networks from other closely related species presents a vital approach to infer the molecular impact of a new species. In this paper, we propose the transferred multi-relational embedding model Bio-JOIE to capture the knowledge of gene ontology and PPI networks, which demonstrates superb capability in modeling the SARS-CoV-2-human protein interactions. Bio-JOIE jointly trains two model components. The knowledge model encodes the relational facts from the protein and GO domains into separated embedding spaces, using a hierarchy-aware encoding technique employed for the GO terms. On top of that, the transfer model learns a non-linear transformation to transfer the knowledge of PPIs and gene ontology annotations across their embedding spaces. By leveraging only structured knowledge, Bio-JOIE significantly outperforms existing state-of-the-art methods in PPI type prediction on multiple species. Furthermore, we also demonstrate the potential of leveraging the learned representations on clustering proteins with enzymatic function into enzyme commission families. Finally, we show that Bio-JOIE can accurately identify PPIs between the SARS-CoV-2 proteins and human proteins, providing valuable insights for advancing research on this new disease.



قيم البحث

اقرأ أيضاً

We report a neural architecture search framework, BioNAS, that is tailored for biomedical researchers to easily build, evaluate, and uncover novel knowledge from interpretable deep learning models. The introduction of knowledge dissimilarity function s in BioNAS enables the joint optimization of predictive power and biological knowledge through searching architectures in a model space. By optimizing the consistency with existing knowledge, we demonstrate that BioNAS optimal models reveal novel knowledge in both simulated data and in real data of functional genomics. BioNAS provides a useful tool for domain experts to inject their prior belief into automated machine learning and therefore making deep learning easily accessible to practitioners. BioNAS is available at https://github.com/zj-zhang/BioNAS-pub.
Boltzmann machines are energy-based models that have been shown to provide an accurate statistical description of domains of evolutionary-related protein and RNA families. They are parametrized in terms of local biases accounting for residue conserva tion, and pairwise terms to model epistatic coevolution between residues. From the model parameters, it is possible to extract an accurate prediction of the three-dimensional contact map of the target domain. More recently, the accuracy of these models has been also assessed in terms of their ability in predicting mutational effects and generating in silico functional sequences. Our adaptive implementation of Boltzmann machine learning, adabmDCA, can be generally applied to both protein and RNA families and accomplishes several learning set-ups, depending on the complexity of the input data and on the user requirements. The code is fully available at https://github.com/anna-pa-m/adabmDCA. As an example, we have performed the learning of three Boltzmann machines modeling the Kunitz and Beta-lactamase2 protein domains and TPP-riboswitch RNA domain. The models learned by adabmDCA are comparable to those obtained by state-of-the-art techniques for this task, in terms of the quality of the inferred contact map as well as of the synthetically generated sequences. In addition, the code implements both equilibrium and out-of-equilibrium learning, which allows for an accurate and lossless training when the equilibrium one is prohibitive in terms of computational time, and allows for pruning irrelevant parameters using an information-based criterion.
156 - E. Almaas , A.-L. Barabasi 2004
The rapidly developing theory of complex networks indicates that real networks are not random, but have a highly robust large-scale architecture, governed by strict organizational principles. Here, we focus on the properties of biological networks, d iscussing their scale-free and hierarchical features. We illustrate the major network characteristics using examples from the metabolic network of the bacterium Escherichia coli. We also discuss the principles of network utilization, acknowledging that the interactions in a real network have unequal strengths. We study the interplay between topology and reaction fluxes provided by flux-balance analysis. We find that the cellular utilization of the metabolic network is both globally and locally highly inhomogeneous, dominated by hot-spots, representing connected high-flux pathways.
114 - Xiang Ren , Zeqiu Wu , Wenqi He 2016
Extracting entities and relations for types of interest from text is important for understanding massive text corpora. Traditionally, systems of entity relation extraction have relied on human-annotated corpora for training and adopted an incremental pipeline. Such systems require additional human expertise to be ported to a new domain, and are vulnerable to errors cascading down the pipeline. In this paper, we investigate joint extraction of typed entities and relations with labeled data heuristically obtained from knowledge bases (i.e., distant supervision). As our algorithm for type labeling via distant supervision is context-agnostic, noisy training data poses unique challenges for the task. We propose a novel domain-independent framework, called CoType, that runs a data-driven text segmentation algorithm to extract entity mentions, and jointly embeds entity mentions, relation mentions, text features and type labels into two low-dimensional spaces (for entity and relation mentions respectively), where, in each space, objects whose types are close will also have similar representations. CoType, then using these learned embeddings, estimates the types of test (unlinkable) mentions. We formulate a joint optimization problem to learn embeddings from text corpora and knowledge bases, adopting a novel partial-label loss function for noisy labeled data and introducing an object translation function to capture the cross-constraints of entities and relations on each other. Experiments on three public datasets demonstrate the effectiveness of CoType across different domains (e.g., news, biomedical), with an average of 25% improvement in F1 score compared to the next best method.
Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network m odels based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا