ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockwisely Supervised Neural Architecture Search with Knowledge Distillation

96   0   0.0 ( 0 )
 نشر من قبل Changlin Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural Architecture Search (NAS), aiming at automatically designing network architectures by machines, is hoped and expected to bring about a new revolution in machine learning. Despite these high expectation, the effectiveness and efficiency of existing NAS solutions are unclear, with some recent works going so far as to suggest that many existing NAS solutions are no better than random architecture selection. The inefficiency of NAS solutions may be attributed to inaccurate architecture evaluation. Specifically, to speed up NAS, recent works have proposed under-training different candidate architectures in a large search space concurrently by using shared network parameters; however, this has resulted in incorrect architecture ratings and furthered the ineffectiveness of NAS. In this work, we propose to modularize the large search space of NAS into blocks to ensure that the potential candidate architectures are fully trained; this reduces the representation shift caused by the shared parameters and leads to the correct rating of the candidates. Thanks to the block-wise search, we can also evaluate all of the candidate architectures within a block. Moreover, we find that the knowledge of a network model lies not only in the network parameters but also in the network architecture. Therefore, we propose to distill the neural architecture (DNA) knowledge from a teacher model as the supervision to guide our block-wise architecture search, which significantly improves the effectiveness of NAS. Remarkably, the capacity of our searched architecture has exceeded the teacher model, demonstrating the practicability and scalability of our method. Finally, our method achieves a state-of-the-art 78.4% top-1 accuracy on ImageNet in a mobile setting, which is about a 2.1% gain over EfficientNet-B0. All of our searched models along with the evaluation code are available online.

قيم البحث

اقرأ أيضاً

Neural Architecture Search (NAS) achieves significant progress in many computer vision tasks. While many methods have been proposed to improve the efficiency of NAS, the search progress is still laborious because training and evaluating plausible arc hitectures over large search space is time-consuming. Assessing network candidates under a proxy (i.e., computationally reduced setting) thus becomes inevitable. In this paper, we observe that most existing proxies exhibit different behaviors in maintaining the rank consistency among network candidates. In particular, some proxies can be more reliable -- the rank of candidates does not differ much comparing their reduced setting performance and final performance. In this paper, we systematically investigate some widely adopted reduction factors and report our observations. Inspired by these observations, we present a reliable proxy and further formulate a hierarchical proxy strategy. The strategy spends more computations on candidate networks that are potentially more accurate, while discards unpromising ones in early stage with a fast proxy. This leads to an economical evolutionary-based NAS (EcoNAS), which achieves an impressive 400x search time reduction in comparison to the evolutionary-based state of the art (8 vs. 3150 GPU days). Some new proxies led by our observations can also be applied to accelerate other NAS methods while still able to discover good candidate networks with performance matching those found by previous proxy strategies.
The goals of this research were to search for Convolutional Neural Network (CNN) architectures, suitable for an on-device processor with limited computing resources, performing at substantially lower Network Architecture Search (NAS) costs. A new alg orithm entitled an Early Exit Population Initialisation (EE-PI) for Evolutionary Algorithm (EA) was developed to achieve both goals. The EE-PI reduces the total number of parameters in the search process by filtering the models with fewer parameters than the maximum threshold. It will look for a new model to replace those models with parameters more than the threshold. Thereby, reducing the number of parameters, memory usage for model storage and processing time while maintaining the same performance or accuracy. The search time was reduced to 0.52 GPU day. This is a huge and significant achievement compared to the NAS of 4 GPU days achieved using NSGA-Net, 3,150 GPU days by the AmoebaNet model, and the 2,000 GPU days by the NASNet model. As well, Early Exit Evolutionary Algorithm networks (EEEA-Nets) yield network architectures with minimal error and computational cost suitable for a given dataset as a class of network algorithms. Using EEEA-Net on CIFAR-10, CIFAR-100, and ImageNet datasets, our experiments showed that EEEA-Net achieved the lowest error rate among state-of-the-art NAS models, with 2.46% for CIFAR-10, 15.02% for CIFAR-100, and 23.8% for ImageNet dataset. Further, we implemented this image recognition architecture for other tasks, such as object detection, semantic segmentation, and keypoint detection tasks, and, in our experiments, EEEA-Net-C2 outperformed MobileNet-V3 on all of these various tasks. (The algorithm code is available at https://github.com/chakkritte/EEEA-Net).
This paper proposes a novel cell-based neural architecture search algorithm (NAS), which completely alleviates the expensive costs of data labeling inherited from supervised learning. Our algorithm capitalizes on the effectiveness of self-supervised learning for image representations, which is an increasingly crucial topic of computer vision. First, using only a small amount of unlabeled train data under contrastive self-supervised learning allow us to search on a more extensive search space, discovering better neural architectures without surging the computational resources. Second, we entirely relieve the cost for labeled data (by contrastive loss) in the search stage without compromising architectures final performance in the evaluation phase. Finally, we tackle the inherent discrete search space of the NAS problem by sequential model-based optimization via the tree-parzen estimator (SMBO-TPE), enabling us to reduce the computational expense response surface significantly. An extensive number of experiments empirically show that our search algorithm can achieve state-of-the-art results with better efficiency in data labeling cost, searching time, and accuracy in final validation.
Deep neural networks have rapidly become the mainstream method for face recognition. However, deploying such models that contain an extremely large number of parameters to embedded devices or in application scenarios with limited memory footprint is challenging. In this work, we present an extremely lightweight and accurate face recognition solution. We utilize neural architecture search to develop a new family of face recognition models, namely PocketNet. We also propose to enhance the verification performance of the compact model by presenting a novel training paradigm based on knowledge distillation, namely the multi-step knowledge distillation. We present an extensive experimental evaluation and comparisons with the recent compact face recognition models on nine different benchmarks including large-scale evaluation benchmarks such as IJB-B, IJB-C, and MegaFace. PocketNets have consistently advanced the state-of-the-art (SOTA) face recognition performance on nine mainstream benchmarks when considering the same level of model compactness. With 0.92M parameters, our smallest network PocketNetS-128 achieved very competitive results to recent SOTA compacted models that contain more than 4M parameters. Training codes and pre-trained models are publicly released https://github.com/fdbtrs/PocketNet.
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-b ased optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا