ﻻ يوجد ملخص باللغة العربية
Extreme high-energy peaked BL Lac objects (EHBLs) are blazars whose synchrotron emission peaks at exceptionally high energies, above few keV, in the hard X-ray regime. So far, only a handful of those objects has been detected at very high energy (VHE, E > 100 GeV) gamma rays by Imaging Atmospheric Cherenkov Telescopes. Very remarkably, VHE observations of some of these blazars (like 1ES 0229+200) have provided evidence of a VHE gamma-ray emission extending to several TeV, which is difficult to explain with standard, one-zone synchrotron self-Compton models usually applied to BL Lac objects. The MAGIC collaboration coordinated a multi-year, multi-wavelength observational campaign on ten targets. The MAGIC telescopes detected VHE gamma rays from four EHBLs. In this paper we focus on the source 1ES 1426+426 and its X-ray and VHE gamma-ray properties. The results of different models (synchrotron self-Compton, spine-layer, hadronic) reproducing the broadband spectral energy distribution are also presented.
Extreme high-energy peaked BL Lac objects (EHBLs) are a new emerging class of blazars. The typical two-hump structured spectral energy distribution (SED) is shifted to higher energies with respect to other more established classes of blazars. Multi-w
Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multi-wavelength (MWL) observation
We present the first detection of the nearby (z=0.084) low-luminosity BL Lac object 1ES 1741+196 in the very high energy (VHE: E$>$100 GeV) band. This object lies in a triplet of interacting galaxies. Early predictions had suggested 1ES 1741+196 to b
Blazars - active galaxies with the jet pointing at Earth - emit across all electromagnetic wavelengths. The so-called one-zone model has described well both quiescent and flaring states, however it cannot explain the radio emission. In order to self-
Extreme high-frequency peaked BL Lac objects (EHBLs) are blazars which exhibit extremely energetic synchrotron emission. They also feature non-thermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some so