ترغب بنشر مسار تعليمي؟ اضغط هنا

MAGIC detection of very high energy gamma-ray emission from the low-luminosity blazar 1ES 1741+196

141   0   0.0 ( 0 )
 نشر من قبل Nijil Mankuzhiyil Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first detection of the nearby (z=0.084) low-luminosity BL Lac object 1ES 1741+196 in the very high energy (VHE: E$>$100 GeV) band. This object lies in a triplet of interacting galaxies. Early predictions had suggested 1ES 1741+196 to be, along with several other high-frequency BL Lac sources, within the reach of MAGIC detectability. Its detection by MAGIC, later confirmed by VERITAS, helps to expand the small population of known TeV BL Lacs. The source was observed with the MAGIC telescopes between 2010 April and 2011 May, collecting 46 h of good quality data. These observations led to the detection of the source at 6.0 $sigma$ confidence level, with a steady flux $mathrm{F}(> 100 {rm GeV}) = (6.4 pm 1.7_{mathrm{stat}}pm 2.6_{mathrm{syst}}) cdot 10^{-12}$ ph cm$^{-2}$ s$^{-1}$ and a differential spectral photon index $Gamma = 2.4 pm 0.2_{mathrm{stat}} pm 0.2_{mathrm{syst}}$ in the range of $sim$80 GeV - 3 TeV. To study the broad-band spectral energy distribution (SED) simultaneous with MAGIC observations, we use KVA, Swift/UVOT and XRT, and Fermi/LAT data. One-zone synchrotron-self-Compton (SSC) modeling of the SED of 1ES 1741+196 suggests values for the SSC parameters that are quite common among known TeV BL Lacs except for a relatively low Doppler factor and slope of electron energy distribution. A thermal feature seen in the SED is well matched by a giant ellipticals template. This appears to be the signature of thermal emission from the host galaxy, which is clearly resolved in optical observations.



قيم البحث

اقرأ أيضاً

The number of known very high energy (VHE) blazars is $sim,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their l uminosity in the $gamma$-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy $gamma$-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES,0033+595 with a statistical significance of 5.5,$sigma$. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parameterized with a power law with an integral flux above 150 GeV of $(7.1pm1.3)times 10^{-12} {mathrm{ph,cm^{-2},s^{-1}}}$ and a photon index of ($3.8pm0.7$). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by textit{Swift} as well as textit{INTEGRAL}, and simultaneous high energy (HE, $300$,MeV~--~$10$,GeV) $gamma$-ray data from the textit{Fermi} LAT observatory. Using the empirical approach of Prandini et al. (2010) and the textit{Fermi}-LAT and MAGIC spectra for this object, we estimate the redshift of this source to be $0.34pm0.08pm0.05$. This is a relevant result because this source is possibly one of the ten most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.
Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MA GIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7pm0.5). No significant short-term variability was found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day d elay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.
We report on the detection of very-high energy (VHE, E>100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6 sigma above 100 GeV in 46 hr of stereo observations carried out between August 2010 and February 2011. The measured differential energy spectrum between 70 GeV and 500 GeV can be described by a power law with a steep spectral index of Gamma=-4.1+/-0.7stat+/-0.3syst, and the average flux above 100 GeV is F_{gamma}=(1.3+/-0.2stat+/-0.3syst) x 10^-11 cm^-2 s^-1. These results, combined with the power-law spectrum measured in the first two years of observations by the Fermi-LAT above 100 MeV, with a spectral index of Gamma ~ -2.1, strongly suggest the presence of a break or cut-off around tens of GeV in the NGC 1275 spectrum. The light curve of the source above 100 GeV does not show hints of variability on a month time scale. Finally, we report on the nondetection in the present data of the radio galaxy IC 310, previously discovered by the Fermi-LAT and MAGIC. The derived flux upper limit F^{U.L.}_{gamma} (>300 GeV)=1.2 x 10^-12 cm^-2 s^-1 is a factor ~ 3 lower than the mean flux measured by MAGIC between October 2009 and February 2010, thus confirming the year time-scale variability of the source at VHE.
We present very-high-energy $gamma$-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance abov e background of $20.8sigma$ in $47.2$ hours (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations the temporal properties of 1ES 2344+514 are studied on short and long times scales. We fit a constant flux model to nightly- and seasonally-binned light curves and apply a fractional variability test, to determine the stability of the source on different timescales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly-binned light curves and for the long-term seasonally-binned light curve at the $> 3sigma$ level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (${chi^2/NDF = 7.89/6}$) by a power-law function with index $Gamma = 2.46 pm 0.06_{stat} pm 0.20_{sys} $ and extends to at least 8 TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit (${chi^2/NDF = 6.73/6}$) by a power-law function with index $Gamma = 2.15 pm 0.06_{stat} pm 0.20_{sys} $ while an F-test indicates that the power-law with exponential cutoff function provides a marginally-better fit ($chi^2/NDF $ = $2.56 / 5 $) at the 2.1$sigma$ level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا