ﻻ يوجد ملخص باللغة العربية
Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multi-wavelength (MWL) observations constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073326.7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within a MWL context, including an analysis of the Fermi-LAT data over ten years of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EHBL. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broad-band SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-band SED.
Extreme high-energy peaked BL Lac objects (EHBLs) are a new emerging class of blazars. The typical two-hump structured spectral energy distribution (SED) is shifted to higher energies with respect to other more established classes of blazars. Multi-w
Extreme high-energy peaked BL Lac objects (EHBLs) are blazars whose synchrotron emission peaks at exceptionally high energies, above few keV, in the hard X-ray regime. So far, only a handful of those objects has been detected at very high energy (VHE
Extreme high-frequency peaked BL Lac objects (EHBLs) are blazars which exhibit extremely energetic synchrotron emission. They also feature non-thermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some so
Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MA
The number of known very high energy (VHE) blazars is $sim,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their l