ﻻ يوجد ملخص باللغة العربية
Blazars - active galaxies with the jet pointing at Earth - emit across all electromagnetic wavelengths. The so-called one-zone model has described well both quiescent and flaring states, however it cannot explain the radio emission. In order to self-consistently describe the entire electromagnetic spectrum, extended jet models are necessary. Notably, kinetic descriptions of extended jets can provide the temporal and spatial evolution of the particle species and the full electromagnetic output. Here, we present the initial results of a recently developed hadronic extended-jet code. As protons take much longer than electrons to lose their energy, they can transport energy over much larger distances than electrons and are therefore essential for the energy transport in the jet. Furthermore, protons can inject additional leptons through pion and Bethe-Heitler pair production, which can explain a dominant leptonic radiation signal while still producing neutrinos. We will present a detailed parameter study and provide insights into the different blazar sub-classes.
Flaring activity in blazars can last for vastly different time-scales, and may be the result of density enhancements in the jet flow that result from the intrusion of an interstellar cloud into the jet. We investigate the lightcurves expected from th
In this paper we propose a way to use optical polarisation observations to provide independent constraints and guide to the modelling of the spectral energy distribution (SED) of blazars, which is particularly useful when two-zone models are required
We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE VLBA program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes ar
In this paper, we investigate the acceleration in relativistic jets of high-energy proton preaccelerated in the magnetosphere of a supermassive black hole. The proton reaches maximum energy when passing the total potential difference of $U$ between t
Extreme high-energy peaked BL Lac objects (EHBLs) are blazars whose synchrotron emission peaks at exceptionally high energies, above few keV, in the hard X-ray regime. So far, only a handful of those objects has been detected at very high energy (VHE