ترغب بنشر مسار تعليمي؟ اضغط هنا

Denoising and Verification Cross-Layer Ensemble Against Black-box Adversarial Attacks

104   0   0.0 ( 0 )
 نشر من قبل Ka-Ho Chow
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have demonstrated impressive performance on many challenging machine learning tasks. However, DNNs are vulnerable to adversarial inputs generated by adding maliciously crafted perturbations to the benign inputs. As a growing number of attacks have been reported to generate adversarial inputs of varying sophistication, the defense-attack arms race has been accelerated. In this paper, we present MODEF, a cross-layer model diversity ensemble framework. MODEF intelligently combines unsupervised model denoising ensemble with supervised model verification ensemble by quantifying model diversity, aiming to boost the robustness of the target model against adversarial examples. Evaluated using eleven representative attacks on popular benchmark datasets, we show that MODEF achieves remarkable defense success rates, compared with existing defense methods, and provides a superior capability of repairing adversarial inputs and making correct predictions with high accuracy in the presence of black-box attacks.

قيم البحث

اقرأ أيضاً

Transfer learning is a useful machine learning framework that allows one to build task-specific models (student models) without significantly incurring training costs using a single powerful model (teacher model) pre-trained with a large amount of da ta. The teacher model may contain private data, or interact with private inputs. We investigate if one can leak or infer such private information without interacting with the teacher model directly. We describe such inference attacks in the context of face recognition, an application of transfer learning that is highly sensitive to personal privacy. Under black-box and realistic settings, we show that existing inference techniques are ineffective, as interacting with individual training instances through the student models does not reveal information about the teacher. We then propose novel strategies to infer from aggregate-level information. Consequently, membership inference attacks on the teacher model are shown to be possible, even when the adversary has access only to the student models. We further demonstrate that sensitive attributes can be inferred, even in the case where the adversary has limited auxiliary information. Finally, defensive strategies are discussed and evaluated. Our extensive study indicates that information leakage is a real privacy threat to the transfer learning framework widely used in real-life situations.
Deep neural network (DNN) has demonstrated its success in multiple domains. However, DNN models are inherently vulnerable to adversarial examples, which are generated by adding adversarial perturbations to benign inputs to fool the DNN model to miscl assify. In this paper, we present a cross-layer strategic ensemble framework and a suite of robust defense algorithms, which are attack-independent, and capable of auto-repairing and auto-verifying the target model being attacked. Our strategic ensemble approach makes three original contributions. First, we employ input-transformation diversity to design the input-layer strategic transformation ensemble algorithms. Second, we utilize model-disagreement diversity to develop the output-layer strategic model ensemble algorithms. Finally, we create an input-output cross-layer strategic ensemble defense that strengthens the defensibility by combining diverse input transformation based model ensembles with diverse output verification model ensembles. Evaluated over 10 attacks on ImageNet dataset, we show that our strategic ensemble defense algorithms can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false negative rates, compared to existing representative defense methods.
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus fa r, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD utilizes tentative perturbations transferred from image models, and partition-based rectifications found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93% success rate using only an average of $3.4 sim 8.4 times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.
The vulnerability of machine learning systems to adversarial attacks questions their usage in many applications. In this paper, we propose a randomized diversification as a defense strategy. We introduce a multi-channel architecture in a gray-box sce nario, which assumes that the architecture of the classifier and the training data set are known to the attacker. The attacker does not only have access to a secret key and to the internal states of the system at the test time. The defender processes an input in multiple channels. Each channel introduces its own randomization in a special transform domain based on a secret key shared between the training and testing stages. Such a transform based randomization with a shared key preserves the gradients in key-defined sub-spaces for the defender but it prevents gradient back propagation and the creation of various bypass systems for the attacker. An additional benefit of multi-channel randomization is the aggregation that fuses soft-outputs from all channels, thus increasing the reliability of the final score. The sharing of a secret key creates an information advantage to the defender. Experimental evaluation demonstrates an increased robustness of the proposed method to a number of known state-of-the-art attacks.
We investigate how an adversary can optimally use its query budget for targeted evasion attacks against deep neural networks in a black-box setting. We formalize the problem setting and systematically evaluate what benefits the adversary can gain by using substitute models. We show that there is an exploration-exploitation tradeoff in that query efficiency comes at the cost of effectiveness. We present two new attack strategies for using substitute models and show that they are as effective as previous query-only techniques but require significantly fewer queries, by up to three orders of magnitude. We also show that an agile adversary capable of switching through different attack techniques can achieve pareto-optimal efficiency. We demonstrate our attack against Google Cloud Vision showing that the difficulty of black-box attacks against real-world prediction APIs is significantly easier than previously thought (requiring approximately 500 queries instead of approximately 20,000 as in previous works).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا