ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Layer Strategic Ensemble Defense Against Adversarial Examples

132   0   0.0 ( 0 )
 نشر من قبل Wenqi Wei
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural network (DNN) has demonstrated its success in multiple domains. However, DNN models are inherently vulnerable to adversarial examples, which are generated by adding adversarial perturbations to benign inputs to fool the DNN model to misclassify. In this paper, we present a cross-layer strategic ensemble framework and a suite of robust defense algorithms, which are attack-independent, and capable of auto-repairing and auto-verifying the target model being attacked. Our strategic ensemble approach makes three original contributions. First, we employ input-transformation diversity to design the input-layer strategic transformation ensemble algorithms. Second, we utilize model-disagreement diversity to develop the output-layer strategic model ensemble algorithms. Finally, we create an input-output cross-layer strategic ensemble defense that strengthens the defensibility by combining diverse input transformation based model ensembles with diverse output verification model ensembles. Evaluated over 10 attacks on ImageNet dataset, we show that our strategic ensemble defense algorithms can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false negative rates, compared to existing representative defense methods.

قيم البحث

اقرأ أيضاً

142 - Jihun Hamm , Akshay Mehra 2017
Recently, researchers have discovered that the state-of-the-art object classifiers can be fooled easily by small perturbations in the input unnoticeable to human eyes. It is also known that an attacker can generate strong adversarial examples if she knows the classifier parameters. Conversely, a defender can robustify the classifier by retraining if she has access to the adversarial examples. We explain and formulate this adversarial example problem as a two-player continuous zero-sum game, and demonstrate the fallacy of evaluating a defense or an attack as a static problem. To find the best worst-case defense against whitebox attacks, we propose a continuous minimax optimization algorithm. We demonstrate the minimax defense with two types of attack classes -- gradient-based and neural network-based attacks. Experiments with the MNIST and the CIFAR-10 datasets demonstrate that the defense found by numerical minimax optimization is indeed more robust than non-minimax defenses. We discuss directions for improving the result toward achieving robustness against multiple types of attack classes.
Deep neural networks (DNNs) have demonstrated impressive performance on many challenging machine learning tasks. However, DNNs are vulnerable to adversarial inputs generated by adding maliciously crafted perturbations to the benign inputs. As a growi ng number of attacks have been reported to generate adversarial inputs of varying sophistication, the defense-attack arms race has been accelerated. In this paper, we present MODEF, a cross-layer model diversity ensemble framework. MODEF intelligently combines unsupervised model denoising ensemble with supervised model verification ensemble by quantifying model diversity, aiming to boost the robustness of the target model against adversarial examples. Evaluated using eleven representative attacks on popular benchmark datasets, we show that MODEF achieves remarkable defense success rates, compared with existing defense methods, and provides a superior capability of repairing adversarial inputs and making correct predictions with high accuracy in the presence of black-box attacks.
Deep neural networks have demonstrated cutting edge performance on various tasks including classification. However, it is well known that adversarially designed imperceptible perturbation of the input can mislead advanced classifiers. In this paper, Permutation Phase Defense (PPD), is proposed as a novel method to resist adversarial attacks. PPD combines random permutation of the image with phase component of its Fourier transform. The basic idea behind this approach is to turn adversarial defense problems analogously into symmetric cryptography, which relies solely on safekeeping of the keys for security. In PPD, safe keeping of the selected permutation ensures effectiveness against adversarial attacks. Testing PPD on MNIST and CIFAR-10 datasets yielded state-of-the-art robustness against the most powerful adversarial attacks currently available.
Despite being popularly used in many applications, neural network models have been found to be vulnerable to adversarial examples, i.e., carefully crafted examples aiming to mislead machine learning models. Adversarial examples can pose potential ris ks on safety and security critical applications. However, existing defense approaches are still vulnerable to attacks, especially in a white-box attack scenario. To address this issue, we propose a new defense approach, named MulDef, based on robustness diversity. Our approach consists of (1) a general defense framework based on multiple models and (2) a technique for generating these multiple models to achieve high defense capability. In particular, given a target model, our framework includes multiple models (constructed from the target model) to form a model family. The model family is designed to achieve robustness diversity (i.e., an adversarial example successfully attacking one model cannot succeed in attacking other models in the family). At runtime, a model is randomly selected from the family to be applied on each input example. Our general framework can inspire rich future research to construct a desirable model family achieving higher robustness diversity. Our evaluation results show that MulDef (with only up to 5 models in the family) can substantially improve the target models accuracy on adversarial examples by 22-74% in a white-box attack scenario, while maintaining similar accuracy on legitimate examples.
Deep neural networks (DNNs) are vulnerable to adversarial examples with small perturbations. Adversarial defense thus has been an important means which improves the robustness of DNNs by defending against adversarial examples. Existing defense method s focus on some specific types of adversarial examples and may fail to defend well in real-world applications. In practice, we may face many types of attacks where the exact type of adversarial examples in real-world applications can be even unknown. In this paper, motivated by that adversarial examples are more likely to appear near the classification boundary, we study adversarial examples from a new perspective that whether we can defend against adversarial examples by pulling them back to the original clean distribution. We theoretically and empirically verify the existence of defense affine transformations that restore adversarial examples. Relying on this, we learn a defense transformer to counterattack the adversarial examples by parameterizing the affine transformations and exploiting the boundary information of DNNs. Extensive experiments on both toy and real-world datasets demonstrate the effectiveness and generalization of our defense transformer.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا